4.4 Article

The electro-weak phase transition at colliders: confronting theoretical uncertainties and complementary channels

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 5, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP05(2021)099

关键词

Beyond Standard Model; Spontaneous Symmetry Breaking; Higgs Physics; Perturbative QCD

资金

  1. UK's Royal Society
  2. World Premier International Research Center Initiative (WPI), MEXT, Japan

向作者/读者索取更多资源

Research suggests that a 100 TeV proton collider may confirm or falsify a strong first-order transition, potentially occurring relatively early in its lifetime. Furthermore, a lower-energy collider at 27 TeV may also probe a large fraction, if not all, of the parameter space.
We explore and contrast the capabilities of future colliders to probe the nature of the electro-weak phase transition. We focus on the real singlet scalar field extension of the Standard Model, representing the most minimal, yet most elusive, framework that can enable a strong first-order electro-weak phase transition. By taking into account the theoretical uncertainties and employing the powerful complementarity between gauge and Higgs boson pair channels in the searches for new scalar particles, we find that a 100 TeV proton collider has the potential to confirm or falsify a strong first-order transition. Our results hint towards this occurring relatively early in its lifetime. Furthermore, by extrapolating down to 27 TeV, we find that a lower-energy collider may also probe a large fraction of the parameter space, if not all. Such early discoveries would allow for precise measurements of the new phenomena to be obtained at future colliders and would pave the way to definitively verify whether this is indeed the physical remnant of a scalar field that catalyses a strong first-order transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据