4.6 Article

Plant Growth and Drought Tolerance-Promoting Bacterium for Bioremediation of Paraquat Pesticide Residues in Agriculture Soils

期刊

FRONTIERS IN MICROBIOLOGY
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2021.604662

关键词

paraquat; plant growth-promoting; bioremediation; soil; pot experiment; contaminated agricultural soil

资金

  1. National Research Council of Thailand (NRCT) through the budget of the fiscal year of 2018 of Chiang Mai Rajabhat University
  2. Graduate School of Chiang Mai University
  3. Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University

向作者/读者索取更多资源

Thailand heavily relies on herbicides, especially paraquat, for agricultural productivity, leading to paraquat accumulation in agricultural land. This study identified a bacterium, Bacillus aryabhattai strain MoB09, capable of degrading paraquat and promoting plant growth, offering potential for mitigating paraquat residues and enhancing plant productivity in organic crop production.
Thailand is an agricultural country. However, agricultural productivity relies on the heavy use of herbicides, especially paraquat. Paraquat accumulation is emerging as a problem in an ever-growing portion of agricultural land. Paraquat residues are toxic to plants, animals, and aquatic organisms in the environment. Biological remediation is a process that can mitigate agricultural chemical contaminants. One of the interesting bioremediators is bacteria. Not only do certain soil bacteria remediate paraquat, but some of them also possess plant growth-promoting properties, which provide advantages in field application. Thus, this study aimed to screen soil bacteria that could degrade paraquat and, at the same time, promote plant growth. Bacteria were isolated from paraquat-treated agricultural soil in Mueang Kaen Pattana municipality, Chiang Mai province, Thailand. On the basis of morphological and 16S rDNA sequence analyses, the selected bacterium was identified as Bacillus aryabhattai strain MoB09. It is capable of growing in nitrogen-free media. B. aryabhattai growth and paraquat degradation were found to be optimum at pH 7 and 30 degrees C. This selected strain also possessed plant growth-promoting abilities, including indole production, siderophore production, phosphate solubilization, and 1-aminocyclopropane-1-carboxylic acid deaminase activity. Paraquat degradation was also evaluated in pot experiments of cowpea (Vigna unguiculata). It was found that this strain could remediate the paraquat residue in both sterilized and non-sterilized soils. The cowpea plants grown in paraquat-contaminated soil with B. aryabhattai showed longer root and shoot lengths than those grown in soil without bacterial inoculation. In addition, B. aryabhattai also promoted the growth of cowpea under induced drought stress. These results suggested that B. aryabhattai could be applied to mitigate paraquat residue in soil and also to promote plant productivity for the organic crop production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据