4.5 Article

Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression

期刊

ACTA PSYCHIATRICA SCANDINAVICA
卷 133, 期 2, 页码 154-164

出版社

WILEY
DOI: 10.1111/acps.12462

关键词

depression; electroconvulsive therapy; hippocampus; magnetic resonance imaging; diffusion tensor imaging; magnetic resonance spectroscopy

资金

  1. Lundbeck Foundation
  2. Lundbeck Foundation [R62-2010-5364, R67-2010-6363] Funding Source: researchfish

向作者/读者索取更多资源

Objective: To investigate the role of hippocampal plasticity in the antidepressant effect of electroconvulsive therapy (ECT). Method: We used magnetic resonance (MR) imaging including diffusion tensor imaging (DTI) and proton MR spectroscopy (H-1-MRS) to investigate hippocampal volume, diffusivity, and metabolite changes in 19 patients receiving ECT for severe depression. Other regions of interest included the amygdala, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex, and hypothalamus. Patients received a 3T MR scan before ECT (TP1), 1 week (TP2), and 4 weeks (TP3) after ECT. Results: Hippocampal and amygdala volume increased significantly at TP2 and continued to be increased at TP3. DLPFC exhibited a transient volume reduction at TP2. DTI revealed a reduced anisotropy and diffusivity of the hippocampus at TP2. We found no significant post-ECT changes in brain metabolite concentrations, and we were unable to identify a spectral signature at approximate to 1.30 ppm previously suggested to reflect neurogenesis induced by ECT. None of the brain imaging measures correlated to the clinical response. Conclusion: Our findings show that ECT causes a remodeling of brain structures involved in affective regulation, but due to their lack of correlation with the antidepressant effect, this remodeling does not appear to be directly underlying the antidepressant action of ECT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据