4.6 Article

Boosting Electrochemical CO2 Reduction by Controlling Coordination Environment in Atomically Dispersed Ni@NxCy Catalysts

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 9, 期 18, 页码 6438-6445

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.1c01364

关键词

Single-atom catalysts; N/C coordination numbers; XANES spectra; DFT calculation; CO2 reduction reaction

资金

  1. National Natural Science Foundation-China [51676171]
  2. Zhejiang Provincial Key Research and Development Program-China [2020C01135]

向作者/读者索取更多资源

Atomically dispersed Ni-based catalysts with various N/C coordination numbers were fabricated, with the Ni@NxCy-1000 catalyst achieving the highest CO selectivity at a specific temperature. Density functional theory calculation revealed that the active Ni-N2C2 sites played a crucial role in enhancing the CO2RR catalytic activity.
Atomically dispersed Ni-N-C is known as an efficiently active site for the CO2 reduction reaction (CO2RR). However, the effect of the coordination environment between the Ni-N and Ni-C sites on catalytic activity has still not been studied systematically. Herein, atomically dispersed Ni-based catalysts with various N/C coordination numbers (named Ni@NxCy) were fabricated with cost-effective carbon substrates. EXAFS fitting analysis confirmed that the N coordination number decreased from 4 to 1 in Ni@NxCy, catalysts when the pyrolysis temperature increased from 800 to 1100 degrees C, whereas the C coordination number showed an opposite trend. The Ni@NxCy-1000 catalyst with the optimum coordination numbers of two N and two C atoms pyrolyzed at 1000 degrees C achieved the highest FEco of 98.7% at a potential of -0.7 V vs RHE. The density functional theory (DFT) calculation clarified that Ni-N2C2 active sites were favorable to generate more unoccupied Ni 3d orbitals to decrease the free energy (to +0.80 eV) of the rate-determining step, so as to dramatically increase CO2RR catalytic activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据