4.7 Article

High-Resolution Monitoring of Tidal Systems Using UAV: A Case Study on Poplar Island, MD (USA)

期刊

REMOTE SENSING
卷 13, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/rs13071364

关键词

Unmanned Aerial Vehicle (UAV); salt marsh restoration; micro-tidal system; high-resolution monitoring; coastal geomorphology

资金

  1. Minigrant 2018-Salisbury University-Department of Mathematics and Computer Science

向作者/读者索取更多资源

Tidal processes play a crucial role in salt marsh evolution, and maintaining a balance between erosion and deposition is key for analyzing restoration strategies within a natural context. Monitoring and assessing geomorphological changes in micro-tidal systems is essential for restoration interventions.
Tidal processes regulating sediment accretion rates and vegetated platform erosion in tidal systems strongly affect salt marsh evolution. A balance between erosion and deposition in a restored salt marsh is crucial for analyzing restoration strategies to be adopted within a natural context. Marsh morphology is also coupled with tidal mudflats and channel networks and this makes micro-tidal systems crucial for a detailed assessment of restoration interventions. Here, we present a methodological approach for monitoring channel morphodynamics and vegetation variations over a time frame of six years in a low tidal energy salt marsh of the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island (Maryland, USA). The project is a restoration site where sediment dredged from the shipping channels in the upper Chesapeake Bay is used to restore a tidal marsh habitat in mid-Chesapeake Bay. Aerial surveys with an Unmanned Aerial Vehicle (UAV) have been performed for the high-resolution mapping of a small tidal system. Flight missions were planned to obtain a Ground Sample Distance (GSD) of 2 cm. Structure-from-Motion (SfM) and Multi-View-Stereo (MVS) algorithms have been used to reconstruct the 3D geometry of the site. The mapping of channel morphology and an elevation assessment on the mudflat were performed using orthomosaics, Digital Terrain Models (DTMs) and GNSS survey. The results highlight that the workflow adopted in this pilot work is suitable to assess the geomorphological evolution over time in a micro-tidal system. However, issues were encountered for salt marsh due to the presence of dense vegetation. The UAV-based photogrammetry approach with GNSS RTK ground surveys can hence be replicated in similar sites all over the world to evaluate restoration interventions and to develop new strategies for a better management of existing shorelines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据