4.7 Article

Mixed Mode Crack Propagation in Polymers Using a Discrete Lattice Method

期刊

POLYMERS
卷 13, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/polym13081290

关键词

crack propagation; three-point bend; PMMA; lattice model; discrete method; numerical simulation; experimental testing

资金

  1. Programa de Apoyo a la Realizacion de Proyectos Interdiscisplinares de I + D para Jovenes Investigadores de la Universidad Carlos III de Madrid
  2. Comunidad de Madrid (project: OPTIMUM)

向作者/读者索取更多资源

The fracture behavior of polymeric materials has been extensively studied through numerical and experimental analysis. A newly developed discrete numerical model successfully overcomes the limitations in material Poisson's coefficient selection, showing close agreement with experimental results in simulating quasi-static fracture problems.
The fracture behavior of polymeric materials has been widely studied in recent years, both experimentally and numerically. Different numerical approaches have been considered in the study of crack propagation processes, from continuum-based numerical formulations to discrete models, many of the latter being limited in the selection of the Poisson's coefficient of the considered material. In this work, we present a numerical and experimental analysis of the crack propagation process of polymethylmethacrylate beams with central and eccentric notches subjected to quasi-static three-point bending tests. The developed discrete numerical model consists of a regular triangular lattice model based on axial and normal interaction springs, accounting for nearest-neighbor interactions. The proposed model allows solving the above mentioned limitation in the selection of Poisson's coefficient, incorporating a fracture criterion defined by a bilinear law with softening that includes the fracture energy in the formulation and allows considering a progressive damage. One of the main objectives of this work is to show the capacity of this lattice to simulate quasi-static fracture problems. The obtained results show that the proposed lattice model is capable of providing results close to the experimental ones in terms of crack pattern, peak load and initial stiffening.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据