4.7 Article

Structural basis of Blastomyces Endoglucanase-2 adjuvancy in anti-fungal and -viral immunity

期刊

PLOS PATHOGENS
卷 17, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1009324

关键词

-

资金

  1. National Institutes of Health [AI093553, AI035681, AI040996, AI124299, AI149793, AI025780, U01CA231081, RF1AG052324, S10OD018530]
  2. NIH shared instrument grant [NIH-NCRR S10RR029531]
  3. University of Wisconsin-Madison, Office of the Vice Chancellor for Research and Graduate Education
  4. Wisconsin Alumni Research Foundation

向作者/读者索取更多资源

The development of a newly discovered adjuvant that augments cell mediated immune responses against fungi and viruses has potential applications for safe vaccination against various microbial pathogens.
Author summary Fungal disease remains a challenging clinical and public health problem in part because there is no commercial vaccine available. The lack of suitable adjuvants is a critical barrier to developing safe and effective vaccines against fungal pathogens. Current adjuvants such as alum preferentially induce antibody responses which may be limited in mediating protection against fungi. Clinical observations and animal studies implicate cellular immunity as the essential component for the resolution of fungal infections. We have recently discovered an adjuvant that augments cell mediated immune responses and vaccine induced protection against fungi. Here, we identified the structural and mechanistic requirements by which this newly discovered adjuvant induces cell mediated immunity against fungi. As a proof of principle we also demonstrate that the adjuvant drives cellular immune responses against viruses such as influenza. We anticipate that our adjuvant can be used for vaccination with safe subunit vaccines against many microbial pathogens including viruses, intracellular bacteria, fungi and parasites that require cell mediated immune responses. The development of safe subunit vaccines requires adjuvants that augment immunogenicity of non-replicating protein-based antigens. Current vaccines against infectious diseases preferentially induce protective antibodies driven by adjuvants such as alum. However, the contribution of antibody to host defense is limited for certain classes of infectious diseases such as fungi, whereas animal studies and clinical observations implicate cellular immunity as an essential component of the resolution of fungal pathogens. Here, we decipher the structural bases of a newly identified glycoprotein ligand of Dectin-2 with potent adjuvancy, Blastomyces endoglucanase-2 (Bl-Eng2). We also pinpoint the developmental steps of antigen-specific CD4(+) and CD8(+) T responses augmented by Bl-Eng2 including expansion, differentiation and tissue residency. Dectin-2 ligation led to successful systemic and mucosal vaccination against invasive fungal infection and Influenza A infection, respectively. O-linked glycans on Bl-Eng2 applied at the skin and respiratory mucosa greatly augment vaccine subunit- induced protective immunity against lethal influenza and fungal pulmonary challenge.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据