4.5 Article

Insecticide resistance status and mechanisms in Aedes aegypti populations from Senegal

期刊

PLOS NEGLECTED TROPICAL DISEASES
卷 15, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0009393

关键词

-

资金

  1. Global Health Security Agenda (GHSA, US)
  2. European Union [731060]
  3. WHO/TDR [2019/ 973661-0]

向作者/读者索取更多资源

Ae. aegypti populations in Senegal show widespread resistance to insecticides, with variations between regions. Pyrethroid resistance is mainly mediated through metabolic mechanisms rather than target site mutations. These findings provide important insights for dengue vector control strategies in Senegal.
Aedes aegypti is the main epidemic vector of arboviruses in Africa. In Senegal, control activities are mainly limited to mitigation of epidemics, with limited information available for Ae. aegypti populations. A better understanding of the current Ae. aegypti susceptibility status to various insecticides and relevant resistance mechanisms involved is needed for the implementation of effective vector control strategies. The present study focuses on the detection of insecticide resistance and reveals the related mechanisms in Ae. aegypti populations from Senegal. Bioassays were performed on Ae. aegypti adults from nine Senegalese localities (Matam, Louga, Barkedji, Ziguinchor, Mbour, Fatick, Dakar, Kedougou and Touba). Mosquitoes were exposed to four classes of insecticides using the standard WHO protocols. Resistance mechanisms were investigated by genotyping for pyrethroid target site resistance mutations (V1016G, V1016I, F1534C and S989P) and measuring gene expression levels of key detoxification genes (CYP6BB2, CYP9J26, CYP9J28, CYP9J32, CYP9M6, CCEae3a and GSTD4). All collected populations were resistant to DDT and carbamates except for the ones in Matam (Northern region). Resistance to permethrin was uniformly detected in mosquitoes from all areas. Except for Barkedji and Touba, all populations were characterized by a susceptibility to 0.75% Permethrin. Susceptibility to type II pyrethroids was detected only in the Southern regions (Kedougou and Ziguinchor). All mosquito populations were susceptible to 5% Malathion, but only Kedougou and Matam mosquitoes were susceptible to 0.8% Malathion. All populations were resistant to 0.05% Pirimiphos-methyl, whereas those from Louga, Mbour and Barkedji, also exhibited resistance to 1% Fenitrothion. None of the known target site pyrethroid resistance mutations was present in the mosquito samples included in the genotyping analysis (performed in > 1500 samples). In contrast, a remarkably high (20-70-fold) overexpression of major detoxification genes wasobserved, suggesting that insecticide resistance is mostly mediated through metabolic mechanisms. These data provide important evidence to support dengue vector control in Senegal. Author summary In Senegal, as in most African countries, the arbovirus epidemics control policy relies on the control of the main vector Ae. aegypti though insecticide applications. Vector control strategies have been largely adopted without information on the vector populations' insecticide resistance mechanisms. We profiled here the resistance status of nine Ae. aegypti populations from Senegal to four classes of insecticides and their related mechanisms. Our findings revealed high resistance to carbamates, a relative susceptibility of southern populations to pyrethroids and a variable efficacy of organophosphates. Resistance to pyrethroids was driven by a significant overexpression of detoxification genes linked to insecticide metabolism. Our results contribute towards a more targeted and efficient control of Ae. aegypti populations and thus of arbovirus epidemics in Senegal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据