4.5 Article

Extracellular vesicles secreted by Giardia duodenalis regulate host cell innate immunity via TLR2 and NLRP3 inflammasome signaling pathways

期刊

PLOS NEGLECTED TROPICAL DISEASES
卷 15, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0009304

关键词

-

资金

  1. National Science Foundation of China [31672288]
  2. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

This study revealed that GEVs could be internalized into primary mouse peritoneal macrophages and regulate host cell innate immunity via activation of TLR2 and NLRP3 signaling pathways, potentially providing new targets against giardiasis by promoting the expression of inflammatory cytokines.
Giardia duodenalis, also known as G. intestinalis or G. lamblia, is the major cause of giardiasis leading to diarrheal disease with 280 million people infections annually worldwide. Extracellular vesicles (EVs) have emerged as a ubiquitous mechanism participating in cells communications. The aim of this study is to explore the roles of G. duodenalis EVs (GEVs) in host-pathogen interactions using primary mouse peritoneal macrophages as a model. Multiple methods of electron microscopy, nanoparticle tracking analysis, proteomic assays, flow cytometry, immunofluorescence, qPCR, western blot, ELISA, inhibition assays, were used to characterize GEVs, and explore its effects on the host cell innate immunity as well as the underlying mechanism using primary mouse peritoneal macrophages. Results showed that GEVs displayed typical cup-shaped structure with 150 nm in diameter. GEVs could be captured by macrophages and triggered immune response by increasing the production of inflammatory cytokines Il1 beta, Il6, Il10, Il12, Il17, Ifng, Tnf, Il18, Ccl20 and Cxcl2. Furthermore, activation of TLR2 and NLRP3 inflammasome signaling pathways involved in this process. In addition, CA-074 methyl ester (an inhibitor of cathepsin B) or zVAD-fmk (an inhibitor of pan-caspase) pretreatment entirely diminished these effects triggered by GEVs exposure. Taken together, these findings demonstrated that GEVs could be internalized into mouse peritoneal macrophages and regulate host cell innate immunity via TLR2 and NLRP3 inflammasome signaling pathways. Author summary G. duodenalis, one of the most common cause of diarrheal diseases, is widely existed in the contaminated water and threatening the public health especially in developing countries. Along with the increasing resistance to anti-G. duodenalis drugs occurs, new targets against giardiasis are of urgently needed. The innate immune system is the first defense line of organism to resist multiple pathogens invasion through recognizing pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), termed Toll-like receptors (TLRs) on the surface of cell membrane and nucleotide oligomerization domain (Nod)-like receptors (NLRs) inside immune cells. Recently, extracellular vesicles have emerged as a ubiquitous mechanism participating in cells communications. In this study, EVs secreted by extracellular protozoan G. duodenalis were obtained and displayed typical cup-shaped structure with 150 nm in diameter. Moreover, GEVs could enter into primary mouse peritoneal macrophages and regulate host cell innate immunity by up-regulation of various inflammatory cytokines expression. Furthermore, TLR2 and NLRP3 inflammasome signaling pathways involved in this process. This study demonstrated that GEVs could be internalized into primary mouse peritoneal macrophages, regulate host cell innate immunity via TLR2 and NLRP3 inflammasome signaling pathways, and may provide new targets against giardiasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据