4.6 Article

Mapping the degradation pathway of a disease-linked aspartoacylase variant

期刊

PLOS GENETICS
卷 17, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1009539

关键词

-

资金

  1. Novo Nordisk Foundation [NNF18OC0052441]
  2. Lundbeck Foundation [R249-2017-510, R272-2017-452, R209-2015-3283]
  3. Danish Council for Independent Research (Natur og Univers, Det Frie Forskningsrad) [7014-00039B]

向作者/读者索取更多资源

Canavan disease is a severe neurodegenerative disorder genetically linked to the ASPA gene. The ASPA C152W variant undergoes increased proteasomal degradation due to interference with the de novo folding pathway, although its native structure is largely preserved. Quality control components like Hsp70 and Hsp110 play key roles in the degradation of ASPA C152W, suggesting potential therapeutic targets for protein misfolding diseases.
Canavan disease is a severe progressive neurodegenerative disorder that is characterized by swelling and spongy degeneration of brain white matter. The disease is genetically linked to polymorphisms in the aspartoacylase (ASPA) gene, including the substitution C152W. ASPA C152W is associated with greatly reduced protein levels in cells, yet biophysical experiments suggest a wild-type like thermal stability. Here, we use ASPA C152W as a model to investigate the degradation pathway of a disease-causing protein variant. When we expressed ASPA C152W in Saccharomyces cerevisiae, we found a decreased steady state compared to wild-type ASPA as a result of increased proteasomal degradation. However, molecular dynamics simulations of ASPA C152W did not substantially deviate from wild-type ASPA, indicating that the native state is structurally preserved. Instead, we suggest that the C152W substitution interferes with the de novo folding pathway resulting in increased proteasomal degradation before reaching its stable conformation. Systematic mapping of the protein quality control components acting on misfolded and aggregation-prone species of C152W, revealed that the degradation is highly dependent on the molecular chaperone Hsp70, its co-chaperone Hsp110 as well as several quality control E3 ubiquitin-protein ligases, including Ubr1. In addition, the disaggregase Hsp104 facilitated refolding of aggregated ASPA C152W, while Cdc48 mediated degradation of insoluble ASPA protein. In human cells, ASPA C152W displayed increased proteasomal turnover that was similarly dependent on Hsp70 and Hsp110. Our findings underscore the use of yeast to determine the protein quality control components involved in the degradation of human pathogenic variants in order to identify potential therapeutic targets. Author summary Canavan disease is a fatal neurodegenerative disorder which is genetically linked to polymorphisms in the aspartoacylase (ASPA) gene. Although the molecular mechanism of most disease-causing substitutions remains to be examined, some variants have been suggested to cause the loss-of-function phenotype by perturbing the structural stability of ASPA. So far the cellular fate of these variants have not been examined. Here we examine the stability and degradation pathways of the disease-causing ASPA variant C152W. In yeast cells, ASPA C152W showed decreased steady-state protein levels as a result of increased proteasomal turnover. Our molecular dynamics simulations showed that the C152W substitution did not globally perturb the native structure of ASPA. Instead we propose that ASPA C152W is targeted by the protein quality control system during de novo folding. Specifically, we found that the molecular chaperone Hsp70, its co-chaperone Hsp110, and the E3 ubiquitin-protein ligase Ubr1 promote degradation of ASPA C152W. When we expressed ASPA C152W in cultured human cells, we found that Hsp70 and Hsp110 similarly mediated degradation. Therefore, we propose that Hsp110 should be further examined as a potential therapeutic target in Canavan disease and other protein misfolding diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据