4.6 Article

Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 17, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1008865

关键词

-

资金

  1. National Institute of General Medical Sciences [GM136422, S10OD026825]
  2. National Institute of Allergy and Infectious Diseases [AI134678]
  3. National Science Foundation [IIS1901191, DBI2030790]
  4. National Natural Science Foundation of China [62072243, 61772273]

向作者/读者索取更多资源

TripletRes is a novel deep-learning architecture for high-accuracy protein contact prediction, leveraging multiple evolutionary feature matrices extracted from whole-genome and metagenome databases to minimize information loss. It demonstrates competitive performance in large-scale benchmarks and blind tests, providing important medium- and long-range contact maps for guiding protein folding simulations.
The topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help ab initio structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks. Compared to previous approaches, the major advantage of TripletRes is in its ability to learn and directly fuse a triplet of coevolutionary matrices extracted from the whole-genome and metagenome databases and therefore minimize the information loss during the course of contact model training. TripletRes was tested on a large set of 245 non-homologous proteins from CASP 11&12 and CAMEO experiments and outperformed other top methods from CASP12 by at least 58.4% for the CASP 11&12 targets and 44.4% for the CAMEO targets in the top-L long-range contact precision. On the 31 FM targets from the latest CASP13 challenge, TripletRes achieved the highest precision (71.6%) for the top-L/5 long-range contact predictions. It was also shown that a simple re-training of the TripletRes model with more proteins can lead to further improvement with precisions comparable to state-of-the-art methods developed after CASP13. These results demonstrate a novel efficient approach to extend the power of deep convolutional networks for high-accuracy medium- and long-range protein contact-map predictions starting from primary sequences, which are critical for constructing 3D structure of proteins that lack homologous templates in the PDB library. Author summary Ab initio protein folding has been a major unsolved problem in computational biology for more than half a century. Recent community-wide Critical Assessment of Structure Prediction (CASP) experiments have witnessed exciting progress on ab initio structure prediction, which was mainly powered by the boosting of contact-map prediction as the latter can be used as constraints to guide ab initio folding simulations. In this work, we proposed a new open-source deep-learning architecture, TripletRes, built on the residual convolutional neural networks for high-accuracy contact prediction. The large-scale benchmark and blind test results demonstrate competitive performance of the proposed methods to other top approaches in predicting medium- and long-range contact-maps that are critical for guiding protein folding simulations. Detailed data analyses showed that the major advantage of TripletRes lies in the unique protocol to fuse multiple evolutionary feature matrices which are directly extracted from whole-genome and metagenome databases and therefore minimize the information loss during the contact model training.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据