4.7 Article

Morphology of Active Deformable 3D Droplets

期刊

PHYSICAL REVIEW X
卷 11, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.11.021001

关键词

-

资金

  1. European Commissions Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant [812780]
  2. Marie Curie Actions (MSCA) [812780] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

This study numerically investigates the morphology and disclination line dynamics of active nematic droplets in three dimensions, revealing a wide range of complex behaviors. The interaction between active anchoring, active flows, and the dynamics of the motile disclination lines are found to explain the diversity of behavior observed. The findings suggest that some biological systems may share the same underlying mechanisms as active nematic droplets, providing insights into processes such as morphogenesis and collective cancer invasion.
We numerically investigate the morphology and disclination line dynamics of active nematic droplets in three dimensions. Although our model incorporates only the simplest possible form of achiral active stress, active nematic droplets display an unprecedented range of complex morphologies. For extensile activity, fingerlike protrusions grow at points where disclination lines intersect the droplet surface. For contractile activity, however, the activity field drives cup-shaped droplet invagination, run-and-tumble motion, or the formation of surface wrinkles. This diversity of behavior is explained in terms of an interplay between active anchoring, active flows, and the dynamics of the motile disclination lines. We discuss our findings in the light of biological processes such as morphogenesis, collective cancer invasion, and the shape control of biomembranes, suggesting that some biological systems may share the same underlying mechanisms as active nematic droplets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据