4.7 Article

Molecularly Informed Field Theories from Bottom-up Coarse-Graining

期刊

ACS MACRO LETTERS
卷 10, 期 5, 页码 576-583

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsmacrolett.1c00013

关键词

-

资金

  1. BASF Corporation through the California Research Alliance
  2. National Science Foundation [OAC-1925717, CHEM-1800344]
  3. California NanoSystems Institute
  4. Materials Research Science and Engineering Center (MRSEC) at UC Santa Barbara [NSF DMR 1720256]
  5. NSF CMMT Program [DMR-1822215]

向作者/读者索取更多资源

This method leverages all-atom molecular dynamics to inform coarser field-theoretic models, successfully predicting experimental PEO cloud-point curves without fitting parameters to experimental data. This multiscale simulation approach opens up new avenues for studying phase behavior across different polymer solutions and melt formulations.
Polymer formulations possessing mesostructures or phase coexistence are challenging to simulate using atomistic particle-explicit approaches due to the disparate time and length scales, while the predictive capability of field-based simulations is hampered by the need to specify interactions at a coarser scale (e.g., chi-parameters). To overcome the weaknesses of both, we introduce a bottom-up coarsegraining methodology that leverages all-atom molecular dynamics to molecularly inform coarser field-theoretic models. Specifically, we use relative-entropy coarse-graining to parametrize particle models that are directly and analytically transformable into statistical field theories. We demonstrate the predictive capability of this approach by reproducing experimental aqueous poly(ethylene oxide) (PEO) cloud-point curves with no parameters fit to experimental data. This synergistic approach to multiscale polymer simulations opens the door to de novo exploration of phase behavior across a wide variety of polymer solutions and melt formulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据