4.7 Article

Comparative transcriptome analysis of cells from different areas reveals ROS responsive mechanism at sclerotial initiation stage in Morchella importuna

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-87784-w

关键词

-

资金

  1. National Natural Science Foundation of China [31902087]

向作者/读者索取更多资源

This study identified significant differences in gene expression between sclerotial and hyphal cells at the sclerotial initiation stage, indicating that sclerotial cells are more resistant to ROS stress through transcriptional regulation of related genes. This suggests a potential mechanism for the higher tolerance of sclerotial cells to oxidative stress compared to hyphal cells.
Morels are some of the most highly prized edible and medicinal mushrooms, with great economic and scientific value. Outdoor cultivation has been achieved and expanded on a large scale in China in recent years. Sclerotial formation is one of the most important phases during the morel life cycle, and previous reports indicated that reactive oxygen species (ROS) play an important role. However, ROS response mechanisms at sclerotial initiation (SI) stage are poorly understood. In this study, comparative transcriptome analyses were performed with sclerotial and hyphal cells at different areas in the same plate at SI stage. Gene expression was significantly different at SI stage between sclerotial formation and mycelia growth areas. GO and KEGG analyses indicated more vigorous metabolic characteristics in the hyphae area, while transcription process, DNA repair, and protein processing were enriched in sclerotial cells. Gene expression related to H2O2 production was high in the hyphae area, while expression of H2O2-scavenging genes was high in sclerotial cells, leading to a higher H2O2 concentration in the hyphal region than in the sclerotium. Minor differences were observed in gene expression of H2O2-induced signaling pathway in sclerotial and hyphal cells; however, expression levels of the target genes of transcription factor MSN2, important in the H2O2-induced signaling pathways, were significantly different. MSN2 enhanced stress response regulation in sclerotia by regulating these target genes. Small molecular HSPs were also found upregulated in sclerotial cells. This study indicated that sclerotial cells are more resistant to ROS stress than hyphal cells through transcriptional regulation of related genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据