4.7 Article

Genetic variation and population structure in China summer maize germplasm

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-84732-6

关键词

-

向作者/读者索取更多资源

This study characterized the genetic diversity and population structure of maize germplasm in the China Summer maize ecological region using molecular techniques. The inbred lines were divided into different supergroups, groups, and subgroups based on genetic data and tag-SNPs, with a significant contribution of North American germplasm in the breeding collection. Genomic differentiation and genetic diversity within subgroups were found to be large, and two predominant heterotic patterns were identified in the CSM region.
Maize (Zea mays L.) germplasm in China Summer maize ecological region (CSM) or central corn-belt of China is diverse but has not been systematically characterized at molecular level. In this study, genetic variation, genome diversity, linkage disequilibrium patterns, population structure, and characteristics of different heterotic groups were studied using 525,141 SNPs obtained by Genotyping-By-Sequencing (GBS) for 490 inbred lines collected from researchers at CSM region. The SNP density is lower near centromere, but higher near telomere region of maize chromosome, the degree of linkage disequilibrium (r(2)) vary at different chromosome regions. Majority of the inbred lines (66.05%) show pairwise relative kinship near zero, indicating a large genetic diversity in the CSM breeding germplasm. Using 4849 tagSNPs derived from 3618 haplotype blocks, the 490 inbred lines were delineated into 3 supergroups, 6 groups, and 10 subgroups using ADMIXTURE software. A procedure of assigning inbred lines into heterotic groups using genomic data and tag-SNPs was developed and validated. Genome differentiation among different subgroups measured by F-st, and the genetic diversity within each subgroup measured by GD are both large. The share of heterotic groups that have significant North American germplasm contribution: P, SS, IDT, and X, accounts about 54% of the CSM breeding germplasm collection and has increased significantly in the last two decades. Two predominant types of heterotic pattern in CSM region are: M-Reid groupxTSPT group, and X subgroupxLocal subgroups.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据