4.7 Article

Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-021-87490-7

关键词

-

资金

  1. Nederlandse Organisatie voor Wetenschappelijk Onderzoek [17509]

向作者/读者索取更多资源

This study presents a systematic pore-scale modelling approach to quantify crucial reservoir-scale functions related to underground hydrogen storage, and assesses their dependencies on fluid and reservoir rock conditions. A rigorous sensitivity analysis was conducted to quantify the impacts of uncertain fluid and rock properties in the absence of sufficient experimental data.
Underground hydrogen storage (UHS) in initially brine-saturated deep porous rocks is a promising large-scale energy storage technology, due to hydrogen's high specific energy capacity and the high volumetric capacity of aquifers. Appropriate selection of a feasible and safe storage site vitally depends on understanding hydrogen transport characteristics in the subsurface. Unfortunately there exist no robust experimental analyses in the literature to properly characterise this complex process. As such, in this work, we present a systematic pore-scale modelling study to quantify the crucial reservoir-scale functions of relative permeability and capillary pressure and their dependencies on fluid and reservoir rock conditions. To conduct a conclusive study, in the absence of sufficient experimental data, a rigorous sensitivity analysis has been performed to quantify the impacts of uncertain fluid and rock properties on these upscaled functions. The parameters are varied around a base-case, which is obtained through matching to the existing experimental study. Moreover, cyclic hysteretic multiphase flow is also studied, which is a relevant aspect for cyclic hydrogen-brine energy storage projects. The present study applies pore-scale analysis to predict the flow of hydrogen in storage formations, and to quantify the sensitivity to the micro-scale characteristics of contact angle (i.e., wettability) and porous rock structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据