4.7 Article

Co-reactant-free self-enhanced solid-state electrochemiluminescence platform based on polyluminol-gold nanocomposite for signal-on detection of mercury ion

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-021-86195-1

关键词

-

资金

  1. CSIR
  2. Department of Science and Technology [EMR/2017/004449]

向作者/读者索取更多资源

The development of a self-enhanced solid-state ECL platform using polyluminol gold nanocomposite on a glassy carbon electrode has shown promising potential for sensitive and selective detection of Hg2+ ions. The presence of gold nanoparticles enhances electron transfer kinetics, leading to improved ECL intensity and label-free detection. This platform could pave the way for on-site monitoring in clinical bioassays and immunosensors.
Development of a self-enhanced solid-state ECL platform creates a straightforward experimental design for the fabrication of point-of-care applications. Herein, we develop a promising method for self-enhanced solid-state ECL platform of polyluminol gold nanocomposite on glassy carbon electrode [(PL-Au)(nano)/GCE] via simple one-step electrochemical deposition process without involving any additional co-reactants. The presence of gold nanoparticles (AuNPs) augments the electron transfer kinetics of PL (polyluminol) and enhances the solid-state ECL intensity and promotes label-free, excellent sensitivity, and selectivity to detect Hg2+ in physiological pH through signal-on mode. Unlike pristine PL/GCE, electrochemically co-deposited AuNPs in the (PL-Au)(nano)/GCE composite, enable the co-reactant accelerator by improving the catalytic activity of PL towards oxygen reduction reaction (ORR) yielding in-situ ROS (co-reactant) generation. Further, the ECL intensity of (PL-Au)(nano)/GCE composite, gradually increases with each addition of Hg2+ ion. This is because of the formation of an amalgamation of Au-Hg on (PL-Au)(nano)/GCE composite surface which further accelerates the yield of in-situ ROS and enhances the intensity of ECL. Whereas no ECL signals changes were observed for PL/GCE composite. The proposed self-enhanced solid-state ECL platform is selectively sensing the Hg2+ ion in the linear range of 0.3-200 nM with a detection limit of 0.1 nM. The demonstrated (PL-Au)(nano)/GCE platform might pave new avenues for further studies in the solid-state ECL platform which could be more useful in on-site monitoring of clinical bioassay and immunosensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据