4.6 Article

Advanced Photonic Thin Films for Solar Irradiation Tuneability Oriented to Greenhouse Applications

期刊

MATERIALS
卷 14, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/ma14092357

关键词

greenhouse; luminescent; FRET; dye; photonic crystal

向作者/读者索取更多资源

The world population growth exacerbates food shortage issues, and greenhouse technology becomes a solution. Optimizing photosynthetic active radiation benefits plant growth.
The world population is growing by 1 billion people every 10 years. There will come a time when there will be more people to feed but less land to grow food. Greenhouses can be the solution to this problem because they provide the highest production yield per m(2) and also use less water, provide food safety, and offer high quality. Photosynthetic active radiation (PAR) favors vegetable growth with a specific blue and red light ratio. Thus, increasing the amount of red light improves chlorophyll absorption and photosynthetic efficiency. In this article, we present a hybrid system that combines luminescent materials and photonic crystals for better management of the light reaching the greenhouse. The luminescent dyes considered herein are combined ensuring a Forster resonance energy transfer (FRET) nonradiative mechanism to enhance the absorption range. The designed photonic crystal maximizes reflections in the Near-Infrared (NIR) range, and therefore, thermal losses are minimized. Thus, by converting harmful or ineffective radiation for plant growth to the PAR region, we aim to demonstrate growth-condition enhancement for the different vegetables that have been used as a model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据