4.6 Article

Plasmon-Enhanced Sunlight Harvesting in Thin-Film Solar Cell by Randomly Distributed Nanoparticle Array

期刊

MATERIALS
卷 14, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/ma14061380

关键词

FDTD; plasmonics; optical absorption

资金

  1. Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah [DF-169-144-1441]

向作者/读者索取更多资源

This study introduces a randomly distributed plasmonic aluminum nanoparticle array on conventional GaAs thin-film solar cells to enhance sunlight harvesting, analyzing the performance through modifications in absorbance and planar density of the plasmonic layer. The findings suggest that increasing the planar density enhances absorption in the visible region but worsens absorption in the near-infrared region.
In this paper, a randomly distributed plasmonic aluminum nanoparticle array is introduced on the top surface of conventional GaAs thin-film solar cells to improve sunlight harvesting. The performance of such photovoltaic structures is determined through monitoring the modification of its absorbance due to changing its structural parameters. A single Al nanoparticle array is integrated over the antireflective layer to boost the absorption spectra in both visible and near-infra-red regimes. Furthermore, the planar density of the plasmonic layer is presented as a crucial parameter in studying and investigating the performance of the solar cells. Then, we have introduced a double Al nanoparticle array as an imperfection from the regular uniform single array as it has different size particles and various spatial distributions. The comparison of performances was established using the enhancement percentage in the absorption. The findings illustrate that the structural parameters of the reported solar cell, especially the planar density of the plasmonic layer, have significant impacts on tuning solar energy harvesting. Additionally, increasing the plasmonic planar density enhances the absorption in the visible region. On the other hand, the absorption in the near-infrared regime becomes worse, and vice versa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据