4.8 Review

Halide Perovskite Materials for Photo(Electro)Chemical Applications: Dimensionality, Heterojunction, and Performance

期刊

ADVANCED ENERGY MATERIALS
卷 12, 期 4, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202004002

关键词

dimensionality; halide perovskites; heterojunctions; photo(electro)chemical applications

资金

  1. National Natural Science Foundation of China [52072273, 51772219, 51872209]
  2. Zhejiang Provincial Natural Science Foundation of China [LQ21B030002, LZ18E030001]
  3. Basic Science and Technology Research Project of Wenzhou [G2020007]

向作者/读者索取更多资源

Halide perovskite materials, based on abundant and low-cost elements, have versatile advantages in the field of photo(electro)chemical catalysis due to their rich structural composition and ease of adjusting electronic properties. The rapid development in the past few years has opened up new opportunities for diverse photo(electro)chemical applications, emphasizing the importance of crystal and morphological dimensionality in boosting overall catalytic performance and stability.
In recent years, halide perovskite materials have sparked intensive research, including their burgeoning development in the field of photo(electro)chemical catalysis. Halide perovskite materials are based on abundant and low-cost elements with a rich structural composition and a variety of molecular and morphological dimensionalities. They possess versatile advantages over other photo(electro)catalytic materials owing to the facile adjustment of electronic properties via molecular and compositional engineering. Thus, the rapid development of perovskite photo(electro)catalysts in the past 4-5 years has opened up new opportunities for diverse photo(electro)chemical applications, ranging from photocatalytic organic reactions (e.g., chemical transformations, photopolymerization, and degradation) to solar-to-chemical fuel conversion (e.g., water splitting and CO2 reduction). This review aims to provide an up-to-date discussion on recent applications of halide perovskite photo(electro)catalytic materials, emphasizing their crystal and morphological dimensionality, synthetic methodologies, heterojunction structures, and fundamental structure-activity relationships. Furthermore, current challenges and future research directions for the rational design of halide perovskite materials to boost their overall catalytic performance and stability are identified and envisaged respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据