4.8 Article

High Facets on Nanowrinkled Cu via Chemical Vapor Deposition Graphene Growth for Efficient CO2 Reduction into Ethanol

期刊

ACS CATALYSIS
卷 11, 期 9, 页码 5658-5665

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.0c05263

关键词

carbon dioxide electroreduction; C-C coupling; high facet; step site; nanowrinkle; CVD graphene growth

资金

  1. Saudi Aramco-KAIST CO2 Management Center
  2. National Research Foundation of Korea (NRF) grant - Ministry of Science, ICT and Future Planning, Korea [NRF-2018R1A2B3008658]
  3. KAIST GCORE (Global Center for Open Research with Enterprise) grant - Ministry of Science and ICT [N11190229]

向作者/读者索取更多资源

The study successfully synthesized a wrinkled Cu catalyst with high facets using graphene as a guiding material, achieving high ethanol selectivity and productivity. The unique atomic arrangement of the wrinkled Cu film, particularly the (310) facet, played a key role in facilitating ethanol production with a low C-C coupling barrier and preferred reaction path.
Achieving high electrochemical conversion of carbon dioxide (CO2) into valuable fuels and chemicals is one of the most promising directions to address environmental and energy challenges. Although several single-crystal based studies and simulation results have reported that rich in steps on Cu (100) surfaces are favorable to convert toward C-2 alcohol products, most studies are still stuck in low-index (100) facets or surface defect-derived low density of step-sites. In the present work, we report the high production of ethanol by synthesizing a wrinkled Cu catalyst with high facets via a chemical vapor deposition (CVD) graphene growth process. Under our approach, we used graphene as a guiding material to produce wrinkled Cu film for use as an electrocatalyst. The graphene-grown Cu films are not only mass-producible but composed of a high density of step-sites with high-facet atomic arrangements, including the (200) and (310) facets, which are difficult to synthesize using existing methods. The wrinkled Cu film with a unique atomic arrangement showed high ethanol selectivity, achieving 40% faradaic efficiency (FE) at -0.9 V vs reversible hydrogen electrode (RHE), one of the largest selectivity values reported thus far for a Cu-based CO2 conversion catalyst. The C-2 selectivity and productivity was 57% FE and -2.2 mA/cm(2) at -1.1 V vs RHE, respectively. Density functional theory (DFT) calculation results demonstrated that such a high ethanol productivity is mainly attributable to the (310) facet of the wrinkles, which feature a low C-C coupling barrier (0.5 eV) and a preferred reaction path toward ethanol among other products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据