4.8 Article

Flame Synthesis of Cu/ZnO-CeO2 Catalysts: Synergistic Metal-Support Interactions Promote CH3OH Selectivity in CO2 Hydrogenation

期刊

ACS CATALYSIS
卷 11, 期 8, 页码 4880-4892

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.1c00131

关键词

CO2 hydrogenation; methanol; ceria; metal-support interaction; flame spray pyrolysis

资金

  1. Netherlands Organization for Scientific Research (NWO)

向作者/读者索取更多资源

In this study, Cu-based catalysts were synthesized using different methods, with the addition of CeO2 found to enhance the CH3OH selectivity of Cu/ZnO-CeO2 catalysts. In situ IR spectroscopy revealed insights into the CO2 hydrogenation mechanism over Cu-Zn-Ce oxide catalysts.
The hydrogenation of CO2 to CH3OH is an important reaction for future renewable energy scenarios. Herein, we compare Cu/ZnO, Cu/CeO2, and Cu/ZnO-CeO2 catalysts prepared by flame spray pyrolysis. The Cu loading and support composition were varied to understand the role of Cu-ZnO and Cu-CeO2 interactions. CeO2 addition improves Cu dispersion with respect to ZnO, owing to stronger Cu-CeO2 interactions. The ternary Cu/ZnO-CeO2 catalysts displayed a substantially higher CH3OH selectivity than binary Cu/CeO2 and Cu/ZnO catalysts. The high CH3OH selectivity in comparison with a commercial Cu-ZnO catalyst is also confirmed for Cu/ZnO-CeO2 catalyst prepared with high Cu loading (similar to 40 wt %). In situ IR spectroscopy was used to probe metal-support interactions in the reduced catalysts and to gain insight into CO2 hydrogenation over the Cu-Zn-Ce oxide catalysts. The higher CH3OH selectivity can be explained by synergistic Cu-CeO2 and Cu-ZnO interactions. Cu-ZnO interactions promote CO2 hydrogenation to CH3OH by Zn-decorated Cu active sites. Cu-CeO2 interactions inhibit the reverse water-gas shift reaction due to a high formate coverage of Cu and a high rate of hydrogenation of the CO intermediate to CH3OH. These insights emphasize the potential of fine-tuning metal-support interactions to develop improved Cu-based catalysts for CO2 hydrogenation to CH3OH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据