4.8 Article

Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-22523-3

关键词

-

资金

  1. National Natural Science Foundation of China [21835004, 21822506, 51671107]
  2. Tianjin Natural Science Foundation [19JCJQJC62400]
  3. 111 project [B12015]
  4. National Research Foundation of Korea [4199990514635] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

In this study, a layered P2-Na0.612K0.056MnO2 with large-sized K+ riveted in the Na-layers enables 0.9 Na+ (de)insertion with a reversible phase transition of P2-P'2. This cathode material demonstrates the highest specific capacity and energy density based on the redox of Mn3+/Mn4+, with high capacity retention after 100 cycles. This research provides insights into tunable chemical environments of transition-metal oxides for advanced cathode materials and promotes the development of sodium-ion batteries. High capacity and structural stable cathode materials remain challenges for sodium-ion batteries.
Layered transition-metal oxides have attracted intensive interest for cathode materials of sodium-ion batteries. However, they are hindered by the limited capacity and inferior phase transition due to the gliding of transition-metal layers upon Na+ extraction and insertion in the cathode materials. Here, we report that the large-sized K+ is riveted in the prismatic Na+ sites of P2-Na0.612K0.056MnO2 to enable more thermodynamically favorable Na+ vacancies. The Mn-O bonds are reinforced to reduce phase transition during charge and discharge. 0.901 Na+ per formula are reversibly extracted and inserted, in which only the two-phase transition of P2 <-> P'2 occurs at low voltages. It exhibits the highest specific capacity of 240.5 mAh g(-1) and energy density of 654 Wh kg(-1) based on the redox of Mn3+/Mn4+, and a capacity retention of 98.2% after 100 cycles. This investigation will shed lights on the tuneable chemical environments of transition-metal oxides for advanced cathode materials and promote the development of sodium-ion batteries. High-capacity and structural stable cathode materials are challenges for sodium-ion batteries. Here, the authors report a layered P2-Na0.612K0.056MnO2 with large-sized K+ riveted in the Na-layers to enable 0.9 Na+ (de)insertion with a reversible phase transition of P2-P'2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据