4.8 Article

In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-22286-x

关键词

-

资金

  1. National Natural Science Foundation of China [21522501, 21521063]
  2. Hunan Provincial Natural Science Foundation of China [2018JJ1007]
  3. Science and Technology Development Fund of Macao S.A.R. (FDCT) [196/2017/A3]

向作者/读者索取更多资源

Researchers have developed a pH-responsive graphitic nanozyme for selective treatment of H. pylori infections, demonstrating high antibacterial capability under low pH gastric conditions while showing negligible side effects towards normal tissues and symbiotic bacteria.
Helicobacter pylori infection is a major etiological factor in gastric diseases. However, clinical antibiotic therapy for H. pylori is limited by continuously decreased therapeutic efficacy and side effects to symbiotic bacteria. Herein, we develop an in vivo activatable pH-responsive graphitic nanozyme, PtCo@Graphene (PtCo@G), for selective treatment of H. pylori. Such nanozymes can resist gastric acid corrosion, exhibit oxidase-like activity to stably generate reactive oxygen species only in acidic gastric milieu and demonstrate superior selective bactericidal property. C-18-PEG(n)-Benzeneboronic acid molecules are modified on PtCo@G, improving its targeting capability. Under acidic gastric pH, graphitic nanozymes show notable bactericidal activity toward H. pylori, while no bacterial killing is observed under intestinal conditions. In mouse model, high antibacterial capability toward H. pylori and negligible side effects toward normal tissues and symbiotic bacteria are achieved. Graphitic nanozyme displays the desired enzyme-like activities at corresponding physiological sites and may address critical issues in clinical treatment of H. pylori infections.Helicobacter pylori is a major cause of gastric diseases, but the standard therapy is limited by continuously decreased therapeutic efficacy and side effects to symbiotic bacteria. Here, the authors develop a pH-responsive graphitic nanozyme that is active under low pH gastric conditions, but inactive in intestines, for selective treatment of H. pylori infections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据