4.8 Article

Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-21958-y

关键词

-

资金

  1. National Natural Science Foundation of China [62071073]
  2. National Key Research and Development Program [2018YFB2100100]
  3. Fundamental Research Funds for Central Universities [2019CDJGFGD007]
  4. Key Science and Technology Program of Chongqing [CSTC2017SHMS-ZDYFX0028]
  5. Technology Innovation and Application Project of Chongqing [cstc2018jszx-cyzdX0111]
  6. China Postdoctoral Science Foundation [2019M663433]
  7. Guangxi Key Laboratory of Manufacturing Systems and Advanced Manufacturing Technology [19-050-44-002K]

向作者/读者索取更多资源

Researchers have proposed a new design for pressure sensors based on a ternary nanocomposite material, showing high sensitivity, fast response, and wide pressure range. The sensor has broad application prospects in wearable electronics and health monitoring.
Sensitivity and pressure range are two significant parameters of pressure sensors. Existing pressure sensors have difficulty achieving both high sensitivity and a wide pressure range. Therefore, we propose a new pressure sensor with a ternary nanocomposite Fe2O3/C@SnO2. The sea urchin-like Fe2O3 structure promotes signal transduction and protects Fe2O3 needles from mechanical breaking, while the acetylene carbon black improves the conductivity of Fe2O3. Moreover, one part of the SnO2 nanoparticles adheres to the surfaces of Fe2O3 needles and forms Fe2O3/SnO2 heterostructures, while its other part disperses into the carbon layer to form SnO2@C structure. Collectively, the synergistic effects of the three structures (Fe2O3/C, Fe2O3/SnO2 and SnO2@C) improves on the limited pressure response range of a single structure. The experimental results demonstrate that the Fe2O3/C@SnO2 pressure sensor exhibits high sensitivity (680 kPa(-1)), fast response (10ms), broad range (up to 150 kPa), and good reproducibility (over 3500 cycles under a pressure of 110 kPa), implying that the new pressure sensor has wide application prospects especially in wearable electronic devices and health monitoring. Pressure sensors with high sensitivity and large pressure range is crucial to their various applications in electronic engineering. Here, Wang et al. propose a new design based on a ternary nanocomposite material and show high pressure sensitivity of 680 kPa(-1) and fast response of 10ms up to 150 kPa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据