4.8 Article

Chemical feedbacks during magma degassing control chlorine partitioning and metal extraction in volcanic arcs

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-21887-w

关键词

-

资金

  1. BHP
  2. University of Bristol
  3. Swiss National Science Foundation

向作者/读者索取更多资源

The study emphasizes the significance of hydrous fluids released from subducting oceanic lithosphere in arc magmatism and hydrothermal mineralization, especially in the formation of porphyry copper deposits. The authors present experimental determinations and Monte Carlo simulations to show the partitioning of chlorine and its relationship with copper evolution in magmas at different pressures. They highlight the importance of understanding chlorine behavior in magma degassing for efficient copper extraction.
Hydrous fluids released from subducting oceanic lithosphere fuel arc magmatism and associated hydrothermal mineralization, including formation of porphyry copper deposits. Critical magma degassing parameters are the depth, chemistry and style of fluid release during magma ascent, notably the behaviour of chlorine, a key metal-transporting ligand. Currently, understanding is limited by restricted data on fluid-melt partitioning of chlorine as a function of pressure and magma chemistry, and the complex interplay between the two that occurs in polybaric magmatic systems. Here we present experimental determinations of chlorine partitioning as a function of fluid and melt composition at pressures from 50 to 800MPa. We provide, for the first time, a quantitative understanding of chlorine and copper evolution that is valid for shallow, deep or transcrustal differentiation and degassing. Monte Carlo simulations using our new data reproduce the chemical evolution of melt inclusions from arc volcanoes and fluid inclusions from upper crustal intrusions and porphyry copper deposits. Our results not only provide a novel chemical framework for understanding magma degassing, but quantify the primacy of magmatic chlorine concentration at the point of fluid saturation in promoting efficient copper extraction from magmas. Chlorine behaviour during complex, polybaric arc magma degassing is poorly understood. Here, the authors show that chemical feedbacks during coeval magma differentiation and degassing account for the Cl record at both volcanoes and ore deposits, and quantify the role of Cl in efficient copper extraction during degassing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据