4.8 Article

A general approach to high-efficiency perovskite solar cells by any antisolvent

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-021-22049-8

关键词

-

资金

  1. Projekt DEAL

向作者/读者索取更多资源

The authors report a general method for fabricating highly efficient perovskite solar cells using any antisolvent by manipulating the application rate. A detailed study of 14 different antisolvents revealed two key factors affecting film quality, leading to power conversion efficiencies exceeding 21% in devices made from a wide range of precursor chemistries.
Deposition of perovskite films by antisolvent engineering is a highly common method employed in perovskite photovoltaics research. Herein, we report on a general method that allows for the fabrication of highly efficient perovskite solar cells by any antisolvent via manipulation of the antisolvent application rate. Through detailed structural, compositional, and microstructural characterization of perovskite layers fabricated by 14 different antisolvents, we identify two key factors that influence the quality of the perovskite layer: the solubility of the organic precursors in the antisolvent and its miscibility with the host solvent(s) of the perovskite precursor solution, which combine to produce rate-dependent behavior during the antisolvent application step. Leveraging this, we produce devices with power conversion efficiencies (PCEs) that exceed 21% using a wide range of antisolvents. Moreover, we demonstrate that employing the optimal antisolvent application procedure allows for highly efficient solar cells to be fabricated from a broad range of precursor stoichiometries. Thin film deposition of perovskites by antisolvent engineering is commonly used, but the effect of processing parameters is not yet fully understood. Here, the authors identify two key factors that influence the film quality through a detailed structural and compositional study of perovskite layers fabricated by 14 different antisolvents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据