4.8 Article

Suppressing bias stress degradation in high performance solution processed organic transistors operating in air

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-22683-2

关键词

-

资金

  1. National Science Foundation [DMR-1627925]
  2. University of Kentucky [DMR-1627428]
  3. KAUST Office of Sponsored Research (OSR) [OSR-2018-CARF/CCF-3079, OSR-2015-CRG4-2572, OSR-4106 CPF2019]
  4. EC FP7 Project SC2 [610115]
  5. EC H2020 [643791]
  6. EPSRC [EP/M005143/1]

向作者/读者索取更多资源

The article discusses a strategy to identify degradation pathways in organic transistors and eliminate instability sources, resulting in high performance and stable organic transistors. Real-time monitoring of trap states and implementation of efficient encapsulation strategy led to consistent mobility and minimal threshold voltage shifts.
Solution processed organic field effect transistors can become ubiquitous in flexible optoelectronics. While progress in material and device design has been astonishing, low environmental and operational stabilities remain longstanding problems obstructing their immediate deployment in real world applications. Here, we introduce a strategy to identify the most probable and severe degradation pathways in organic transistors and then implement a method to eliminate the main sources of instabilities. Real time monitoring of the energetic distribution and transformation of electronic trap states during device operation, in conjunction with simulations, revealed the nature of traps responsible for performance degradation. With this information, we designed the most efficient encapsulation strategy for each device type, which resulted in fabrication of high performance, environmentally and operationally stable small molecule and polymeric transistors with consistent mobility and unparalleled threshold voltage shifts as low as 0.1V under the application of high bias stress in air. Electrical instability of organic field-effect transistors (OFETs) during operation remains a challenge that limits the device's real-world technological viability. Here, the authors report a method for diagnosing and suppressing bias stress in solution-processed OFETs operated in air.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据