4.8 Article

LRIG1 is a gatekeeper to exit from quiescence in adult neural stem cells

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-22813-w

关键词

-

资金

  1. Brain Tumour Charity Quest for Cures Collaborative Team Award [GN-000358]
  2. EMBO long term fellowship [ALTF 4392014]
  3. Cancer Research UK [A19778]

向作者/读者索取更多资源

Neural stem cells can transition between states of proliferation and quiescence, with LRIG1 identified as a crucial regulator in maintaining cells in a quiescent state and priming them for cell cycle re-entry and EGFR responsiveness by modulating the EGFR pathway.
How neural stem cells can transition between states of proliferation and quiescence is unclear. Here, the authors identify Lrig1 as a specific marker for the primed quiescent state and demonstrate that Lrig1 maintains cells in a quiescent state via modulation of the EGFR pathway. Adult neural stem cells (NSCs) must tightly regulate quiescence and proliferation. Single-cell analysis has suggested a continuum of cell states as NSCs exit quiescence. Here we capture and characterize in vitro primed quiescent NSCs and identify LRIG1 as an important regulator. We show that BMP-4 signaling induces a dormant non-cycling quiescent state (d-qNSCs), whereas combined BMP-4/FGF-2 signaling induces a distinct primed quiescent state poised for cell cycle re-entry. Primed quiescent NSCs (p-qNSCs) are defined by high levels of LRIG1 and CD9, as well as an interferon response signature, and can efficiently engraft into the adult subventricular zone (SVZ) niche. Genetic disruption of Lrig1 in vivo within the SVZ NSCs leads an enhanced proliferation. Mechanistically, LRIG1 primes quiescent NSCs for cell cycle re-entry and EGFR responsiveness by enabling EGFR protein levels to increase but limiting signaling activation. LRIG1 is therefore an important functional regulator of NSC exit from quiescence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据