4.7 Article

Genotypic and Phenotypic Diversity among Human Isolates of Akkermansia muciniphila

期刊

MBIO
卷 12, 期 3, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.00478-21

关键词

Verrucomicrobia; comparative genomics; phylogroups; microbiome; mucin; assimilatory sulfur reduction (ASR); adolescent obesity; phylogenetic analysis

资金

  1. NIH [AI142376, CA249243]
  2. Pediatric Scientist Development Program (Eunice Kennedy Shriver National Institute of Child Health and Human Development) [K12-HD000850]
  3. AHA grant [18POST34070017]
  4. NSF institutional predoctoral training grant
  5. [DK110492]
  6. [NIDDK-5T32DK007568-30]

向作者/读者索取更多资源

This study highlights the importance of Akkermansia muciniphila phylogroup diversity in influencing host health outcomes, with different phylogroups potentially exhibiting unique physiological traits and the possibility of phylogroup switching among individuals.
The mucophilic anaerobic bacterium Akkermansia muciniphila is a prominent member of the gastrointestinal (GI) microbiota and the only known species of the Verrucomicrobia phylum in the mammalian gut. A high prevalence of A. muciniphila in adult humans is associated with leanness and a lower risk for the development of obesity and diabetes. Four distinct A. muciniphila phylogenetic groups have been described, but little is known about their relative abundance in humans or how they impact human metabolic health. In this study, we isolated and characterized 71 new A. muciniphila strains from a cohort of children and adolescents undergoing treatment for obesity. Based on genomic and phenotypic analysis of these strains, we found several phylogroup-specific phenotypes that may impact the colonization of the GI tract or modulate host functions, such as oxygen tolerance, adherence to epithelial cells, iron and sulfur metabolism, and bacterial aggregation. In antibiotic-treated mice, phylogroups AmIV and AmII outcompeted AmI strains. In children and adolescents, AmI strains were most prominent, but we observed high variance in A. muciniphila abundance and single phylogroup dominance, with phylogroup switching occurring in a small subset of patients. Overall, these results highlight that the ecological principles determining which A. muciniphila phylogroup predominates in humans are complex and that A. muciniphila strain genetic and phenotypic diversity may represent an important variable that should be taken into account when making inferences as to this microbe's impact on its host's health. IMPORTANCE The abundance of Akkermansia muciniphila in the gastrointestinal (GI) tract is linked to multiple positive health outcomes. There are four known A. muciniphila phylogroups, yet the prevalence of these phylogroups and how they vary in their ability to influence human health is largely unknown. In this study, we performed a genomic and phenotypic analysis of 71 A. muciniphila strains and identified phylogroup-specific traits such as oxygen tolerance, adherence, and sulfur acquisition that likely influence colonization of the GI tract and differentially impact metabolic and immunological health. In humans, we observed that single Akkermansia phylogroups predominate at a given time but that the phylotype can switch in an individual. This collection of strains provides the foundation for the functional characterization of A. muciniphila phylogroup-specific effects on the multitude of host outcomes associated with Akkermansia colonization, including protection from obesity, diabetes, colitis, and neurological diseases, as well as enhanced responses to cancer immunotherapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据