4.7 Article

Whole-Genome Transformation Promotes tRNA Anticodon Suppressor Mutations under Stress

期刊

MBIO
卷 12, 期 2, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.03649-20

关键词

anticodon; thermotolerance; tRNA; whole-genome transformation; yeast

资金

  1. IWT-Flanders
  2. SBO grant from IWT-Flanders [IWT 140044]
  3. SBO grant SPICY from VLAIO [HBC.2017.0597]
  4. EC 7th Framework program (CORNUCOPIA project)

向作者/读者索取更多资源

Mutations in tRNAs play a crucial role in evolution to overcome specific tRNA deficiencies, and stress conditions may have been a driving force for the selection of anticodon-switching mutations in tRNAs. The introduction of a low number of causative elements by whole-genome transformation may be advantageous for improving industrial yeast strains.
tRNAs are encoded by a large gene family, usually with several isogenic tRNAs interacting with the same codon. Mutations in the anticodon region of other tRNAs can overcome specific tRNA deficiencies. Phylogenetic analysis suggests that such mutations have occurred in evolution, but the driving force is unclear. We show that in yeast suppressor mutations in other tRNAs are able to overcome deficiency of the essential TRT2-encoded tRNAThrCGU at high temperature (40(circle)C). Surprisingly, these tRNA suppressor mutations were obtained after whole-genome transformation with DNA from thermotolerant Kluyveromyces marxianus or Ogataea polymorpha strains but from which the mutations did apparently not originate. We suggest that transient presence of donor DNA in the host facilitates proliferation at high temperature and thus increases the chances for occurrence of spontaneous mutations suppressing defective growth at high temperature. Whole-genome sequence analysis of three transformants revealed only four to five nonsynonymous mutations of which one causing TRT2 anticodon stem stabilization and two anticodon mutations in non-threonyl-tRNAs, tRNALysCUU and tRNAeMetCAU, were causative. Both anticodon mutations suppressed lethality of TRT2 deletion and apparently caused the respective tRNAs to become novel substrates for threonyl-tRNA synthetase. Liquid chromatography tandem mass spectrometry (LC-MS/MS) data could not detect any significant mistranslation, and reverse transcription-quantitative PCR results contradicted induction of the unfolded protein response. We suggest that stress conditions have been a driving force in evolution for the selection of anticodon-switching mutations in tRNAs as revealed by phylogenetic analysis. IMPORTANCE In this work, we have identified for the first time the causative elements in a eukaryotic organism introduced by applying whole-genome transformation and responsible for the selectable trait of interest, i.e., high temperature tolerance. Surprisingly, the wholegenome transformants contained just a few single nucleotide polymorphisms (SNPs), which were unrelated to the sequence of the donor DNA. In each of three independent transformants, we have identified a SNP in a tRNA, either stabilizing the essential tRNAThrCGU at high temperature or switching the anticodon of tRNALysCUU or tRNAeMetCAU into CGU, which is apparently enough for in vivo recognition by threonyl-tRNA synthetase. LC-MS/MS analysis indeed indicated absence of significant mistranslation. Phylogenetic analysis showed that similar mutations have occurred throughout evolution and we suggest that stress conditions may have been a driving force for their selection. The low number of SNPs introduced by whole-genome transformation may favor its application for improvement of industrial yeast strains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据