4.7 Article

Saccharomyces cerevisiae Requires CFF1 To Produce 4-Hydroxy-5-Methylfuran-3(2H)-One, a Mimic of the Bacterial Quorum-Sensing Autoinducer AI-2

期刊

MBIO
卷 12, 期 2, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.03303-20

关键词

autoinducer; collective behavior; interspecies; quorum sensing; signaling; yeast

资金

  1. Howard Hughes Medical Institute
  2. NIH [5R37GM065859]

向作者/读者索取更多资源

Quorum sensing is a communication process used by bacteria to coordinate collective behaviors through the production, release, and detection of autoinducers. A new study shows that mammalian cells and yeast Saccharomyces cerevisiae can produce an AI-2 mimic called MHF, which can facilitate interdomain signaling through the protein Cff1p. This discovery expands the scope of organisms and molecules involved in quorum sensing interactions.
Quorum sensing is a process of cell-to-cell communication that bacteria use to orchestrate collective behaviors. Quorum sensing depends on the production, release, and detection of extracellular signal molecules called autoinducers (AIs) that accumulate with increasing cell density. While most AIs are species specific, the AI called AI-2 is produced and detected by diverse bacterial species, and it mediates interspecies communication. We recently reported that mammalian cells produce an AI-2 mimic that can be detected by bacteria through the AI-2 receptor LuxP, potentially expanding the role of the AI-2 system to interdomain communication. Here, we describe a second molecule capable of interdomain signaling through LuxP, 4-hydroxy-5-methylfuran-3(2H)-one (MHF), that is produced by the yeast Saccharomyces cerevisiae. Screening the S. cerevisiae deletion collection revealed Cff1p, a protein with no known role, to be required for MHF production. Cff1p is proposed to be an enzyme, with structural similarity to sugar isomerases and epimerases, and substitution at the putative catalytic residue eliminated MHF production in S. cerevisiae. Sequence analysis uncovered Cff1p homologs in many species, primarily bacterial and fungal, but also viral, archaeal, and higher eukaryotic. Cff1p homologs from organisms from all domains can complement a cff1D S. cerevi-siae mutant and restore MHF production. In all cases tested, the identified catalytic resi-due is conserved and required for MHF to be produced. These findings increase the scope of possibilities for interdomain interactions via AI-2 and AI-2 mimics, highlighting the breadth of molecules and organisms that could participate in quorum sensing. IMPORTANCE Quorum sensing is a cell-to-cell communication process that bacteria use to monitor local population density. Quorum sensing relies on extracellular signal molecules called autoinducers (AIs). One AI called AI-2 is broadly made by bacteria and used for interspecies communication. Here, we describe a eukaryotic AI-2 mimic, 4-hydroxy-5-methylfuran-3(2H)-one, (MHF), that is made by the yeast Saccharomyces cerevisiae, and we identify the Cff1p protein as essential for MHF production. Hundreds of viral, archaeal, bacterial, and eukaryotic organisms possess Cff1p homologs. This finding, combined with our results showing that homologs from all domains can replace S. cerevisiae Cff1p, suggests that like AI-2, MHF is widely produced. Our results expand the breadth of organisms that may participate in quorum-sensing-mediated interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据