4.6 Review

Transcriptional and Non-Transcriptional Activation, Posttranslational Modifications, and Antiviral Functions of Interferon Regulatory Factor 3 and Viral Antagonism by the SARS-Coronavirus

期刊

VIRUSES-BASEL
卷 13, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/v13040575

关键词

IRF3; interferon; posttranslational modifications; RIPA; innate antiviral immunity; viral antagonism; SARS-CoV-2

类别

资金

  1. National Institutes of Health [AA026017, AI155545, AA027456, AI153496]
  2. Medical Research Society
  3. University of Toledo College of Medicine and Life Sciences startup funds

向作者/读者索取更多资源

IRF3 plays a critical role in antiviral immunity by transcribing interferon and triggering apoptosis of virus-infected cells. Viruses can counteract IRF3 functions by manipulating posttranslational modifications.
The immune system defends against invading pathogens through the rapid activation of innate immune signaling pathways. Interferon regulatory factor 3 (IRF3) is a key transcription factor activated in response to virus infection and is largely responsible for establishing an antiviral state in the infected host. Studies in Irf3(-/-) mice have demonstrated the absence of IRF3 imparts a high degree of susceptibility to a wide range of viral infections. Virus infection causes the activation of IRF3 to transcribe type-I interferon (e.g., IFN beta), which is responsible for inducing the interferon-stimulated genes (ISGs), which act at specific stages to limit virus replication. In addition to its transcriptional function, IRF3 is also activated to trigger apoptosis of virus-infected cells, as a mechanism to restrict virus spread within the host, in a pathway called RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA). These dual functions of IRF3 work in concert to mediate protective immunity against virus infection. These two pathways are activated differentially by the posttranslational modifications (PTMs) of IRF3. Moreover, PTMs regulate not only IRF3 activation and function, but also protein stability. Consequently, many viruses utilize viral proteins or hijack cellular enzymes to inhibit IRF3 functions. This review will describe the PTMs that regulate IRF3 ' s RIPA and transcriptional activities and use coronavirus as a model virus capable of antagonizing IRF3-mediated innate immune responses. A thorough understanding of the cellular control of IRF3 and the mechanisms that viruses use to subvert this system is critical for developing novel therapies for virus-induced pathologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据