4.7 Article

Selection of Multiple Donor Gauges via Graphical Lasso for Estimation of Daily Streamflow Time Series

期刊

WATER RESOURCES RESEARCH
卷 57, 期 5, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2020WR028936

关键词

conditional independence; gauge removal; Glasso; graphical Markov modeling; selection of donor gauges; streamflow network

资金

  1. William Kepler Whiteford Professorship from the University of Pittsburgh

向作者/读者索取更多资源

The paper introduces a novel method to systematically select multiple reference gauges for daily streamflow time series estimations, addressing a fundamental challenge in incomplete record sites.
A fundamental challenge in estimations of daily streamflow time series at sites with incomplete records is how to effectively and efficiently select reference/donor gauges from an existing gauge network to infer the missing data. While research on estimating missing streamflow time series is not new, the existing approaches either use a single reference streamflow gauge or employ a set of ad hoc reference gauges, leaving a systematic selection of reference gauges as a long-standing open question. In this work, a novel method is introduced that facilitates a systematic selection of multiple reference gauges from any given streamflow network. The idea is to mathematically characterize the network-wise correlation structure of a streamflow network via graphical Markov modeling and to further transform a dense network into a sparsely connected one. The resulted underlying sparse graph from the graphical model encodes conditional independence conditions among all reference gauges from the streamflow network, allowing determination of an optimum subset of the donor gauges. The sparsity is discovered by using the Graphical Lasso algorithm with an L1 norm regularization parameter and a thresholding parameter. These two parameters are determined by a multi-objective optimization process. Furthermore, the graphical modeling approach is employed to solve another open problem in gauge removal planning decision (e.g., due to operation budget constraints): which gauges to remove would statistically guarantee the least loss of information by estimations from the remaining gauges? Our graphical model-based method is demonstrated with daily streamflow data from a network of 34 gauges over the Ohio River basin region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据