4.8 Article

Molecular responses to inorganic and organic phosphorus sources in the growth and toxin formation of Microcystis aeruginosa

期刊

WATER RESEARCH
卷 196, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.117048

关键词

Microcystis aeruginosa growth; Microcystins production; Physiological response; Inorganic phosphorus; Organic phosphorus

资金

  1. National Natural Science Foundation of China [92047303, 51979171, 51709181]

向作者/读者索取更多资源

The study investigated the molecular responses of algal growth and toxin formation under different phosphorus sources, with high-concentration dissolved inorganic phosphorus promoting the growth of Microcystis aeruginosa, while high-concentration dissolved organic phosphorus triggered the release of intracellular microcystins.
Toxic cyanobacteria bloom is a ubiquitous phenomenon worldwide in eutrophic lakes or reservoirs. Microcystis, is a cosmopolitan genus in cyanobacteria and exists in many different forms. Microcystis aeruginosa ( M. aeruginosa) can produce microcystins (MCs) with strong liver toxicity during its growth and decomposition. Phosphorus (P) is a typical growth limiting factor of M. aeruginosa. Though different forms and concentrations of P are common in natural water, the molecular responses in the growth and MCs formation of M. aeruginosa remain unclear. In this study, laboratory experiments were conducted to determine the uptake of P, cell activity, MCs release, and related gene expression under different concentrations of dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP). We found that the growth of M. aeruginosa was promoted by increasing DIP concentration but coerced under high concentration (0.6 and 1.0 mg P/L) of DOP after P starvation. The growth stress was not related to the alkaline phosphatase activity (APA). Although alkaline phosphatase (AP) could convert DOP into algae absorbable DIP, the growth status of M. aeruginosa mainly depended on the response mechanism of phosphate transporter expression to the extracellular P concentration. High-concentration DIP promoted MCs production in M. aeruginosa, while high-concentration DOP triggered the release of intracellular MCs rather than affecting MCs production. Our study revealed the molecular responses of algal growth and toxin formation under different P sources, and provided a theoretical basis and novel idea for risk management of eutrophic lakes and reservoirs. (C) 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据