4.8 Article

How a water-resources crisis highlights social-ecological disconnects

期刊

WATER RESEARCH
卷 194, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2021.116937

关键词

Water resources management; Social-ecological; Red-loop green-loop model; Water crisis; Feedbacks

向作者/读者索取更多资源

This article examines the potential application of a social-ecological framework in water resources management using the 2017/18 Cape Town water crisis as a case study. A combination of government and community-led measures, incorporating both local and non-local ecosystem forms of water resource management, helped avert the collapse of water resources. Additional disaster management plans proposed tighter integration of water management approaches to foster a stronger connection between the Cape Town community and their water resources.
The sustainable management of water resources is required to avoid water scarcity becoming widespread. This article explores the potential application of a social-ecological framework, used predominantly in the fields of ecology and conservation, as a tool to improve the sustainability and resilience of water resources. The ?red-loop green-loop? (RL-GL) model has previously been used to map both sustainable and unsustainable social-ecological feedbacks between ecosystems and their communities in countries such as Sweden and Jamaica. In this article, we demonstrate the novel application of the RL-GL framework to water resources management using the 2017/18 Cape Town water crisis. We used the framework to analyse the social-ecological dynamics of pre-crisis and planned contingency scenarios. We found that the water resources management system was almost solely reliant on a single, non ecosystem form of infrastructure, the provincial dam system. As prolonged drought impacted this key water resource, resilience to resource collapse was shown to be low and a missing feedback between the water resource and the Cape Town community was highlighted. The collapse of water resources (?Day Zero?) was averted through a combination of government and community group led measures, incorporating both local ecosystem (green-loop) and non-local ecosystem (red-loop) forms of water resource management, and increased rainfall returning to the area. Additional disaster management plans proposed by the municipality included the tighter integration of red and green-loop water management approaches, which acted to foster a stronger connection between the Cape Town community and their water resources. We advocate the wider development and application of the RL-GL model, theoretically and empirically, to investigate missing feedbacks between water resources and their communities. ? 2021 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据