4.7 Article

Releasing bacteria from functional magnetic beads is beneficial to MALDI-TOF MS based identification

期刊

TALANTA
卷 225, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.talanta.2020.121968

关键词

Bacteria identification; MALDI-TOF MS; FcMBL; Magnetic beads; EDTA

资金

  1. National Key Research and Development Plan of China [2018YFF0212501]
  2. National Natural Science Foundation of China [31470786]

向作者/读者索取更多资源

The accuracy of bacterial identification based on MALDI-TOF MS can be affected by functional proteins, releasing bacteria from functional material can increase accuracy.
Bacterial infections are the key cause of morbidity and mortality worldwide. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS)-based bacterial identification has been widely accepted in the clinic. Functional material, such as rabbit immunoglobulin G-modified Fe3O4 (IgG@Fe3O4) and fragment crystallizable mannose binding lectin-modified Fe3O4 (FcMBL@desorption), is used to capture bacteria from biological samples for MALDI-TOF MS identification, and the bacteria MS signals are usually obtained by directly smearing enriched bacteria on a MALDI target with MALDI matrix solution. However, the accuracy of identification based on MALDI-TOF MS may be affected by the presence of functional molecules, especially proteins, resulting in errors in the comparison with the standard bacterial spectra in the database. Moreover, the long-term presence of the magnetic beads on the MALDI-TOF target may reduce the instrument service life. In this study, we constructed FcMBL@desorption and used it to capture bacteria from both aqueous solution and bovine blood, and the bacterial identification accuracy based on different target preparation methods was compared. In the presence of Ca2+, the similarity scores for bacteria identified with FcMBL@desorption were similar to 88% and similar to 82% for Staphylococcus. aureus and Escherichia coli, respectively. In the presence of ethylenediaminetetraacetic acid (EDTA), bacteria separate from FcMBL@desorption, resulting in similarity scores of similar to 96% and similar to 92% for S. aureus and E. coli, respectively. These results indicate that the functional proteins on the surface of nanoparticles affect the accuracy of identification accuracy based on the MALDI-TOF MS database. Thus, the release of bacteria from the functional material could increase the identification accuracy and be beneficial for maintaining the instrument.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据