4.7 Article

A multiplexed immuno-sensor for on-line and automated monitoring of tissue culture protein biomarkers

期刊

TALANTA
卷 225, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.talanta.2020.122021

关键词

Hydrodynamic shear; Multiplexed protein sensor; Nanomembrane; Silica nanoparticles; Tissue engineering

资金

  1. Office of the Secretary of Defense
  2. [W911NF-17-3-003]

向作者/读者索取更多资源

The AEM-based sensing platform is a low-cost, rapid, reliable multiplexed platform that enhances detection reliability and accuracy through optimized protocols for each target, with comparable detection sensitivity and dynamic range to ELISA, and significantly reduced detection time of 1 hour.
Frequent on-line and automated monitoring of multiple protein biomarkers level secreted in the culture media during tissue growth is essential for the successful development of Tissue Engineering and Regenerative Medicine (TERM) products. Here, we present a low-cost, rapid, reliable, and integrable anion-exchange membrane-(AEM) based multiplexed sensing platform for this application. Unlike the gold-standard manual ELISA test, incubation/wash steps are optimized for each target and precisely metered in microfluidic chips to enhance selectivity. Unlike optical detection and unreliable visual detection for the ELISA test, which require standardization for every usage, the AEM ion current signal also offers robustness, endowed by the pH and ionic strength control capability of the ion-selective membrane, such that a universal standard curve can be used to calibrate all runs. The electrical signal is enhanced by highly charged silica nanoparticle reporters, which also act as hydrodynamic shear amplifiers to enhance selectivity during wash. This AEM-based sensing platform is tested with vascular protein biomarkers, Endothelin-1 (ET-1), Angiogenin (ANG) and Placental Growth Factor (PlGF). The limit of detection and three-decade dynamic range are comparable to ELISA assay but with a significantly reduced assay time of 1 h vs 7 h, due to the elimination of calibration and blocking steps. Optimized protocol for each target renders the detection highly reliable with more than 98% confidence. The multiplexed detection capability of the platform is also demonstrated by simultaneous detection of ET-1, ANG and PlGF in 40 mu l of the vascular endothelial cell culture supernatants using three-membrane AEM sensor and the performance is validated against ELISA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据