4.7 Article

Damage assessment of a titanium skin adhesively bonded to carbon fiber-reinforced plastic omega stringers using acoustic emission

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/14759217211001752

关键词

Bi-material adhesively bonded joint; structural health monitoring; debonding; acoustic emission; digital image correlation

资金

  1. Clean Sky 2 Joint Undertaking under the European Union [737785]
  2. H2020 Societal Challenges Programme [737785] Funding Source: H2020 Societal Challenges Programme

向作者/读者索取更多资源

This study explored the use of acoustic emission technique for damage assessment in aeronautical bi-material structures. The results showed that acoustic emission accurately detected and tracked damage evolution, and identified damage initiation earlier than digital image correlation.
This study is devoted to the use of acoustic emission technique for a comprehensive damage assessment, that is, damage detection, localization, and classification, of an aeronautical metal-to-composite bonded panel. The structure comprised a titanium panel adhesively bonded to carbon fiber-reinforced plastic omega stringers. The panel contained a small initial artificial debonding between the titanium panel and one of the carbon fiber-reinforced plastic stringers. The panel was subjected to a cyclic increasing in-plane compression load, including loading, unloading, and then reloading to a higher load level, until the final fracture. The generated acoustic emission signals were captured by the acoustic emission sensors, and digital image correlation was also used to obtain the strain field on the surface of the panel during the test. The results showed that acoustic emission can accurately detect the damage onset, localize it, and also trace its evolution. The acoustic emission results not only were consistent with the digital image correlation results, but also managed to detect the damage initiation earlier than digital image correlation. Finally, the acoustic emission signals were clustered using particle swarm optimization method to identify the different damage mechanisms. The results of this study demonstrate the capability of acoustic emission for the comprehensive damage characterization of aeronautical bi-material adhesively bonded structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据