4.8 Review

Designing Nanostructured Metal Chalcogenides as Cathode Materials for Rechargeable Magnesium Batteries

期刊

SMALL
卷 17, 期 25, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202007683

关键词

cathode materials; energy storage systems; metal chalcogenides; nanostructures; rechargeable magnesium batteries

资金

  1. University of the Philippines Balik-PhD Program [OVPAA-BPhD-2019-07]
  2. Singapore National Research Foundation [NRF-NRFF2017-04]

向作者/读者索取更多资源

This article reviews recent research on the design of metal chalcogenide nanostructures for RMBs' cathode materials, discussing different types and structures of metal chalcogenide cathodes and describing the synthetic strategies for nanostructuring these materials. The organized summary of their electrochemical performance and analysis of current challenges and future directions are also provided in the review.
Rechargeable magnesium batteries (RMBs) are regarded as promising candidates for beyond-lithium-ion batteries owing to their high energy density. Moreover, as Mg metal is earth-abundant and has low propensity for dendritic growth, RMBs have the advantages of being more affordable and safer than the currently used lithium-ion batteries. However, the commercial viability of RMBs has been negatively impacted by slow diffusion kinetics in most cathode materials due to the high charge density and strongly polarizing nature of the Mg2+ ion. Nanostructuring of potential cathode materials such as metal chalcogenides offers an effective means of addressing these challenges by providing larger surface area and shorter migration routes. In this article, a review of recent research on the design of metal chalcogenide nanostructures for RMBs' cathode materials is provided. The different types and structures of metal chalcogenide cathodes are discussed, and the synthetic strategies through which nanostructuring of these materials can be achieved are described. An organized summary of their electrochemical performance is also presented, along with an analysis of the current challenges and future directions. Although particular focus is placed on RMBs, many of the nanostructuring concepts that are discussed here can be carried forward to other next-generation energy storage systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据