4.6 Article

Full Respiration Rate Monitoring Exploiting Doppler Information with Commodity Wi-Fi Devices

期刊

SENSORS
卷 21, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/s21103505

关键词

channel state information (CSI); respiration sensing; Doppler shift; Wi-Fi

资金

  1. National Natural Science Foundation of China [62027801]

向作者/读者索取更多资源

This study utilizes channel state information collected by Wi-Fi devices to monitor respiration rate, designing a complete system through time-frequency analysis and multipath decomposition techniques. Experimental results demonstrate the system's high-precision respiratory monitoring capability in various environments.
Respiration rate is an essential indicator of vital signs, which can demonstrate the physiological condition of the human body and provide clues to some diseases. Commercial Wi-Fi devices can provide a non-invasive, cost-effective and long-term respiration rate-monitoring scheme for home scenarios. However, previous studies show that the breathing depth and location may affect the detectability of respiratory signals. In this study, we leverage the variation of the Doppler spectral energy extracted from the channel state information (CSI) collected by Wi-Fi devices to track the chest displacement induced by respiration. First, the random phase is eliminated by phase-fitting method to obtain the complex CSI containing the Doppler shift. Then, the multipath decomposition of CSI is carried out to obtain the channel impulse response, which eliminates the interference phase of the time delay and retains the Doppler shift. The dynamic path units are also separate from the multipath, which overcomes the indoor multipath effect. Finally, we conduct a time-frequency analysis to dynamic units to accumulate Doppler spectral energy. Based on these ideas, we design a complete respiration rate-monitoring system to obtain the respiration rate by using the consistency between the Doppler energy change period and the respiratory cycle. We evaluate our system through extensive experiments in several typical home environments filled with multipath. Experimental results show that the errors of the three scenarios are approximate, the maximum error is less than 0.7 bpm, and the average errors are approximately 0.15 bpm. This result indicates that our scheme can achieve high precision respiration monitoring and has good anti-multipath ability compared with existing methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据