4.7 Article

Integrated wheat-maize straw and tillage management strategies influence economic profit and carbon footprint in the Guanzhong Plain of China

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 767, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2021.145347

关键词

Wheat-maize system; Straw return; SOC sequestration; Net carbon footprint; Economic profit

资金

  1. National Natural Science Foundation of China [31801943, 41371288]
  2. National Key RD Program [2016YFD0200308]

向作者/读者索取更多资源

Research showed that both maize and wheat straw return with subsoiling to 40cm depth after maize harvest (MS-WR) represented an economically and environmentally optimal field management practice.
Appropriate straw and tillage management strategies increase grain yields, and promote atmospheric carbon dioxide (CO2) mitigation through soil organic carbon (SOC) sequestration. However, little is known about economic parameters and carbon footprint (CF, defined as total greenhouse gases emission from the whole life cycle perspective) of intensive wheat (Trilicum aestivum L.)-maize (Zea mays L.) double cropping production under different integrated strategies of straw-return and tillage. To quantify the differences of straw-return and tillage integrated strategies in economic parameters and carbon sustainability, a field experiment was established in 2008 in which six integrated strategies were evaluated: straw return of both maize and wheat (MR-WR), MR-WR with subsoiling to similar to 40 cm depth after maize harvest (MS-WR), single straw return of wheat (MN-WR), single straw return of maize (MR-WN), MR-WN with subsoiling to similar to 40 cm depth after maize harvest (MS-WN) and no straw return (MN-WN). Results showed that the MS-WR had the greatest grain yields of both wheat and maize, gross revenue and economic profit with increases of 45.5%, 35.6%, 26.5%, and 79.7% relative to the MN-WN, respectively. Compared with the initial SOC level, the SOC stock increased by 22.9% under MS-WR, following by MR-WR (16.0%), MS-WN (11.6%), MR-WN (8.0%), MN-WR (5.1%), and MN-WN (-3.8%). The MS-WR reduced the net CF and net CF per economic profit by 35.4% and 64.1% relative to the MN-WN although it elevated the CF by 25.3%. Therefore, adopting the integrated strategies of both maize and wheat straw return with subsoiling to similar to 40cm depth after maize harvest represented an economically and C-friendly optimal field management practice for intensive wheat-maize double cropping production in the Guanzhong Plain or other regions with similar environmental conditions in the world. (C) 2021 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据