4.7 Article

Microbial community composition and metabolic functions in landfill leachate from different landfills of China

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 767, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.144861

关键词

Landfill leachate; Bacterial community; Archaeal community; Metabolic function; High-throughput sequencing

资金

  1. Shenzhen Knowledge Innovation Program-Basic Research Project [JCYJ20170817161009390]

向作者/读者索取更多资源

This study investigated the microbial community composition and metabolic functions in landfill leachate from 11 cities in China using Illumina MiSeq high-throughput sequencing. The results showed significant differences in microbial diversity and structure among the leachate samples. Bacteroidetes, Firmicutes, and Proteobacteria were the dominant microbial communities, with diverse bacterial genera associated with various functions. The study provides important insights into the composition and functional characteristics of microbial communities in landfill leachate.
Landfill leachate usually harbors complex microbial communities responsible for the decomposition of municipal solid waste. However, the diversity and metabolic functions of the microbial communities in landfill leachate as well as the factors that influence them are still not well understood. In this study. Illumina MiSeq high-throughput sequencing was used to investigate the microbial community composition and metabolic functions in landfill leachate from 11 cities in China. The microbial diversity and structure of different leachate samples exhibited obvious differences. In general, Bacteroidetes. Firmicutes and Proteobacteria were the three dominant microbial communities among the 26 bacterial phyla identified in landfill leachate, regardless of the geographical locations. Diverse bacterial genera associated with various functions such as cellulolytic bacteria (e.g., Sphaerochaeta and Defluviitoga), acidifying bacteria (e.g., Prevotella and Trichococcus) and sulfate-reducing bacteria (e.g., Desulfuromonas and Desulfobacterium) were detected abundantly in the landfill leachate. Moreover, the archaeal community in all leachate samples was dominated by the orders Methanomicrobiales and Methanosarcinales belonging to the Euryarchaeota phylum. Notably, the archaea-specific primer pair covered more diverse archaeal communities than the universal bacteria-archaea primer pair. Seventeen archaeal genera belonging to acetoclastic, hydrogenotrophic, and methylotrophic methanogens were identified, and the composition of the dominant genera in these samples varied greatly. The canonical correlation analysis indicated that landfill age, electrical conductivity, ammonia nitrogen, and total nitrogen were significantly correlated with the microbial community structure. Based on PICRUSt2, a total of 41 metabolic pathways belonging to six metabolic pathway groups were predicted, and the KEGG pathway Metabolism was the most abundant group across all leachate samples. This study provides an important insight into the composition and functional characteristics of the microbial communities in landfill leachate. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据