4.7 Article

Climate change and hydrological regime of the high-altitude Indus basin under extreme climate scenarios

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 768, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.144467

关键词

High-altitude Indus basin; Climate change; Hydrological regime; Hydrological extremes; GCM projections

资金

  1. Dutch Ministry of Foreign Affairs through the Netherlands Fellowship Program [NFP-PhD.11/898]
  2. Collaborative Adaptation Research Initiative in Africa and Asia (CARIAA)

向作者/读者索取更多资源

The study reveals significant changes in climate and hydrological regimes in the Indus basin, with projections of substantial increases in temperature and uncertain future precipitation trends. Hydrological extremes are likely to intensify, necessitating critical modifications in water resources management strategies and action plans.
Climate change is recognized as one of the greatest challenges of 21st century. This study investigated climate and hydrological regimes of the high-altitude Indus basin for the historical period and extreme scenarios of future climate during 21st century. Improved datasets of precipitation and temperature were developed and forced to a fully-distributed physically-based energy-balance Variable Infiltration Capacity (VIC) hydrological model to simulate the water balance at regional and sub-basin scale. Relative to historical baseline, the results revealed highly contrasting signals of climate and hydrological regime changes. Against an increase of 0.6 degrees C during the last 40 years, the median annual air temperature is projected to increase further between 0.8 and 5.7 degrees C by the end of 21st century. Similarly, a decline of 11.9% in annual precipitation is recorded, but future projections are highly conflicting and spatially variable. The Karakoram region is anticipated to receive more precipitation, while SW-Hindukush and parts of W-Himalayan region may experience decline in precipitation. The Model for Interdisciplinary Research On Climate version-5 (MIR005) generally shows increases, while Max Planck Institute Earth System Model at base resolution (MPI-ESM-LR) indicates decreases in precipitation and river inflows under three Representative Concentration Pathways (RCPs) of 2.6. 4.5 and 8.5. Indus-Tarbela inflows are more likely to increase compared to Kabul, Jhelum and Chenab river inflows. Substantial increase in the magnitudes of peak flows and one-month earlier attainment is projected for all river gauges. High flows are anticipated to increase under most scenarios, while low flows may decrease for MPI-FSM-LR in Jhelum, Chenab and Kabul river basins. Hence, hydrological extremes are likely to be intensified. Critical modifications in the strategies and action plans for hydropower generation, construction and operation of storage reservoirs, irrigation withdrawals, flood control and drought management will be required to optimally manage water resources in the basin. (C) 2021 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据