4.7 Article

Temporal and spatial variation in water quality in the Three Gorges Reservoir from 1998 to 2018

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 768, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.144866

关键词

Hydrology; Spatiotemporal variation; Three gorges reservoir; Water quality; Pollution load

资金

  1. National Key Research and Development Program [2017YFC0404702]
  2. National Natural Science Foundation [51609225]

向作者/读者索取更多资源

The overall water quality of the Three Gorges Reservoir was good, but showed a slight decline before full impoundment. The low water level period had the worst water quality, and the midstream area exhibited the poorest water quality. Total nitrogen and total phosphorus were identified as key pollution indices.
The Three Gorges Reservoir (TGR) underwent staged impoundment of water from 135 m to 175 m between 2003 and 2010. Periodic water impoundment was divided into drainage (March to early June), low water level (June to August), impoundment (September to October), and high water level (November to February) period. However, the impact of the Three Gorges Dam (TGD) and staged impoundment on water quality, especially in the long term, remains unclear. Herein, hydrological, pollution load, nutrient, and biochemical indices were determined for the TGR during 1998-2018. The Canadian Council of Ministers of the Environment Water Quality Index, a K-means clustering algorithm, and the Mann-Kendall (MK) test were applied to this data to explore the spatial and temporal distribution of water quality. The results show that water quality was good overall, but it before the full impoundment stage (2010) was worse than after that. The low water level period had the worst water quality among the four periods, and spatially, midstream was worst. Among water quality indices, the median total nitrogen (TN) and total phosphorus (TP) were in the range of 1505-2303 and 0.071-0.176 mg/L, respectively, and these were the key pollution indices. In addition, due to differences in hydrological and hydrodynamic conditions, and the regional distribution of pollution sources, water quality in the TGR displayed temporal and spatial heterogeneity. TN, TP, potassium permanganate index (CODMn), five-day biochemical oxygen demand (BOD5) and Escherichia coli (E. coli) were maximal during the low water level period, and TN, TP and E. coli were highest in midstream. MK test results revealed that nutrients pollution became worse midstream, and a gradual increase in TP caused severe algal blooms downstream. Therefore, nutritional water treatment and non-point source pollution control should be the focus of future work. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据