4.7 Article

Influence of the source of starch and plasticizers on the environmental burden of starch-Brazil nut fiber biocomposite production: A life cycle assessment approach

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 769, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.144869

关键词

Bioplastic; Sweet potato; Sorbitol; Glycerol; Biocomposite; PLA

资金

  1. Pontificia Universidad Catolica del Peru (VRI-PUCP)

向作者/读者索取更多资源

In the face of the global plastic pollution crisis, bio-based polymers have been suggested as a potential alternative. Studies have shown that starch-based biocomposites have lower environmental impacts compared to conventional materials, with the type of starch and plasticizer significantly influencing production. Brazil nut fibers are highlighted as an eco-friendly and low-burden natural filler due to their easy processing and agricultural waste origin.
Amidst the global plastic pollution crisis, bio-based polymers have been proposed as a potential substitute to tackle this issue. Owed to their biodegradability, biopolymers are generally regarded as eco-friendly during the post-consumer (disposal) stage. However, the environmental burden of the many production processes biopolymers and their components undergo better reflect the sustainable nature of these materials. Previous studies evaluating the Life Cycle Assessment (LCA) of starch-based composites have focused on commercially available starches, although other non-conventional starches can also be used to produce biopolymers. To address this knowledge gap, in the present study we evaluated the LCA of starch-Brazil nut fiber biocomposites prepared with starch from three different sources, Andean potato, corn, and sweet potato, and applying two different plasticizers, glycerol and sorbitol. Results indicated that the starch-based biocomposites were less impacting than conventional PLA-Brazil nut fiber and PP-glass fiber composites. The type of starch and plasticizer significantly influenced the environmental load of the production of the composites. The main drivers of these differences were the multiple agricultural practices, such as irrigation and fertilization, and the crop efficiency for starch extraction. Sorbitol was found to be many times more impacting than glycerol in most categories, which is due to the complex processing of sorbitol and high content in biocomposites with similar mechanical properties than glycerol. Additionally, Brazil nut fibers are presented as an eco-friendly and low-burden natural filler due to their easy processing and agricultural waste origin. The limitations, applications, and significance of the results were discussed. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据