4.7 Article

Removal of acetaminophen through direct electron transfer by reactive Mn2O3: Efficiency, mechanism and pathway

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 769, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.144377

关键词

Mn2O3; Electron transfer; Acetaminophen; Selective oxidation

资金

  1. National Natural Science Foundation of China [21806125]
  2. Postdoctoral Science Foundation of China [2016M602365]
  3. Fundamental Research Funds for Central Universities of China
  4. Large-scale Instrument and Equipment Sharing Foundation of Wuhan University

向作者/读者索取更多资源

The research investigated the mechanism of using Mn2O3 prepared by sol-gel method to remove APAP, revealing the APAP oxidation mechanism through electrochemical tests and XPS. Experimental results demonstrated that under acidic conditions, Mn2O3 can effectively eliminate APAP, with its reactivity influenced by the surface acid-base behavior and surface charge situation.
Mn2O3 with certain oxidative reactivity, was fabricated via sol-gel method and applied for the removal of acetaminophen (APAP). The mechanism of APAP oxidation was revealed in depth through electrochemical tests and X-ray photoelectron spectroscopy (XPS). Moreover, the selective abatement of various organic contaminants contained different functional groups by Mn2O3 was investigated through linear free energy relationship (LFER) estimated with peak potentials (E-op) of these organic contaminants. Under acidic condition, APAP could be effectively eliminated by Mn2O3. The open circuit potential (OCP) and zeta potential tests illustrate that the oxidative reactivity of Mn2O3 is associated to the surface acid-base behavior of Mn2O3 and its surface charge situation. The XPS experiments and Mn leaching results imply that Mn(III) could capture electron from APAP and release Mn2+ to aqueous phase. The intermediates could be ascribed to fragmentation of acetamido radicals and phenoxy radicals, both of which were formed through electron transfer from APAP to Mn2O3. The reactive Mn2O3 shows selective oxidation of different contaminants in the electron transfer process. LFER analysis indicates good negative linear correlation between Ink(1) and E-op of various pollutants. The efficiency of Mn2O3 in the elimination of APAP and selective oxidation of different contaminants suggest some new insights for transformation of APAP and other electron-rich pollutants in the environments. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据