4.5 Article

Self-integrating current sensor for fast pulsed current monitor in transmission line

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 92, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/5.0038730

关键词

-

资金

  1. National Natural Science Foundation of China [51790524]

向作者/读者索取更多资源

A compact self-integrating current sensor was developed in this study to monitor fast pulsed current and locate faults. The designed current sensor showed effectiveness in experiments after structural optimization and theoretical analysis of matching schemes. The study also investigated the influence of parameters on the output signal of the current sensor.
The fast linear transformer driver (FLTD) utilizes a water-insulated transmission line as its secondary. To monitor the fast pulsed current and locate the fault, a compact self-integrating current sensor is developed. Print circuit board (PCB) coils and PCB integrating resistors are used to form the current sensor. By soldering a large number of chip resistors, PCB integrating resistors with various resistance and low inductance can be obtained. The current sensor is designed in a coaxial structure to reduce its inductance and size and can be installed on the inner conductor of the FLTD's secondary water-insulated transmission line with a small opening. The principle and matching schemes for the current sensor are theoretically analyzed with the circuit principle. Both simple matching and two-stage division can be used to obtain signals without oscillation. The time constant of the two schemes is the same. However, the sensitivity of the current sensor with two-stage division is lower than that with simple matching. A 100 kV step pulse generator is used as the pulsed high current generator to verify the properties of the current sensor. The designed current sensor could respond to the step current pulse with the rise time of 4 ns. The matching scheme is verified to be effective with step response experiments. Finally, the influence of the parameters, which are the coil type, the angle between the PCB coil and the magnetic flux, the resistance of the integrating resistor, and the length of the measuring cable, on the output signal of the current sensor is studied.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据