4.8 Article

Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2021.110796

关键词

Biological hydrogen production; Renewable energy; Cell immobilization; Photofermentation; Photosynthetic bacteria; Photobioreactor; Biofilm

向作者/读者索取更多资源

The article discusses the importance of hydrogen energy as a clean, versatile, and alternative energy source to replace fossil fuels in the future, with a particular emphasis on the environmental advantages of biological immobilization in the production of photofermentative biological hydrogen. It also explores research on key factors affecting hydrogen production in immobilized systems.
The energy consumption in the world is substantially increasing due to the increase in human activities and the energy-requiring industrialization. For decades, fossils fuels have been used as a primary resource in the world. However, considerable fossil fuel consumption has negative impacts and outcomes on the environment. In this sense, hydrogen is regarded as a clean, versatile, and alternative fuel of the future against fossil fuel-dependent energy production. Among different hydrogen production methods, biological hydrogen production offers a more environmentally friendly pathway. Photofermentative biological hydrogen not only profits from utilizing a variety of organic substrates but also, purple non-sulfur bacteria (PNSB), mainly preferred bacteria in this method, operate under a broad range of wavelengths of the light spectrum. In order to improve this process, cell immobilization has been introduced. A number of immobilization techniques, support materials, immobilized photobioreactors were overviewed. The critical factors affecting hydrogen production in immobilized systems were also highlighted. The present work covers a review of recent advances and applications, especially in the last decade in biohydrogen production by immobilized photosynthetic bacteria through natural and synthetic routes. Furthermore, techno-economic aspects (costs, challenges, barriers, etc.) of biohydrogen were evaluated and Analytical Hierarchy Process (AHP) approach was assessed in the case of photobioreactor design. Extensive hydrodynamic, heat and mass transfer issues in addition to large and pilot-scale future studies are recommended to demonstrate the feasibility of the immobilized system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据