4.5 Article

Spatial and seasonal patterns of rainfall erosivity in the Lake Kivu region: Insights from a meteorological observatory network

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/03091333211001793

关键词

Rainfall; erosivity; Lake Kivu; NLS; GAM

资金

  1. Universite Catholique de Louvain (UCL)
  2. goma Volcano Observatory (OVG)
  3. World Bank
  4. Fonds de la Recherche Scientifique FNRS [T.0059.18, J.0167.19]

向作者/读者索取更多资源

This study evaluated the spatiotemporal patterns of rainfall erosivity in the Lake Kivu region using a combination of high and low temporal resolution rainfall data and spatial prediction models. The predictions showed relatively good accuracy for most months, but were less accurate for the wettest and driest months.
In the Lake Kivu region, water erosion is the main driver for soil degradation, but observational data to quantify the extent and to assess the spatial-temporal dynamics of the controlling factors are hardly available. In particular, high spatial and temporal resolution rainfall data are essential as precipitation is the driving force of soil erosion. In this study, we evaluated to what extent high temporal resolution data from the TAHMO network (with poor spatial and long-term coverage) can be combined with low temporal resolution data (with a high spatial density covering long periods of time) to improve rainfall erosivity assessments. To this end, 5 minute rainfall data from TAHMO stations in the Lake Kivu region, representing ca. 37 observation-years, were analyzed. The analysis of the TAHMO data showed that rainfall erosivity was mainly controlled by rainfall amount and elevation and that this relation was different for the dry and wet season. By combining high and low temporal resolution databases and a set of spatial covariates, an environmental regression approach (GAM) was used to assess the spatiotemporal patterns of rainfall erosivity for the whole region. A validation procedure showed relatively good predictions for most months (R-2 between 0.50 and 0.80), while the model was less performant for the wettest (April) and two driest months (July and August) (R-2 between 0.24 and 0.38). The predicted annual erosivity was highly variable with a range between 2000 and 9000 MJ mm ha(-1) h(-1) yr(-1) and showed a pronounced east-west gradient which is strongly influenced by local topography. This study showed that the combination of high and low temporal resolution rainfall data and spatial prediction models can be used to improve the assessments of monthly and annual rainfall erosivity patterns that are grounded in locally calibrated and validated data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据